aboutsummaryrefslogtreecommitdiffstats
path: root/src/bootstrap/hashtable.h
blob: baffec0c10b55df5a34fa97865cea8abe8eb6f1d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
#ifndef BDL_HASHTABLE_H
#define BDL_HASHTABLE_H

#include "darray.h"
#include "objects.h"

// Minimum table capacity.
#define HT_MIN_CAP   4
#define HT_MIN_SHIFT 2

// Adjust the load factor threshold at which the table will grow on insertion.
#define HT_LOAD_THRESHOLD 0.75

typedef struct HashTablePair {
    Object *key;
    Object *value;
} HashTablePair;

typedef struct HashTable {
    // All available key-value pairs as a dynamic array.
    HashTablePair *pairs;

    // This table expects the number of buckets to grow in powers of two. To
    // speedup the default hashing, we memoize the number of bits equivalent to
    // that power of 2:
    //
    //     cap := 1024 = 2 ^ 10, shift_amount := 10
    //
    uint8_t shift_amount;
} HashTable;

// Use Fibonacci hashing to map a hash to a value in range of the table.
static inline uint64_t
_fibonacci_hash(uint64_t hash, size_t shift_amount) {
    return (hash * UINT64_C(11400714819323198485)) >> (64 - shift_amount);
}

uint64_t
ht_hash(const HashTable *table, const Object *key) {
    uint64_t hash = 0x65d9d65f6a19574f;
    // printf("HASHING: ");
    // display(key);
    // printf("\n");
    return 0;
}

static inline size_t
ht_load_factor(const HashTable *table) {
    return array_size(table->pairs) / array_cap(table->pairs);
}

HashTable *
ht_init(void) {
    HashTable *table = malloc(sizeof(HashTable));
    table->pairs = NULL;
    array_init(table->pairs, HT_MIN_CAP);
    // Clear the table ensuring all references point to NULL.
    for (size_t i = 0; i < array_cap(table->pairs); i++) {
        table->pairs[i] = (HashTablePair){NULL, NULL};
    }
    table->shift_amount = HT_MIN_SHIFT;
    return table;
}

void
ht_insert(HashTable *table, const Object *key, const Object *value) {
    // TODO: Grow if needed.
    size_t position = ht_hash(table, key);
    size_t probe_position = position;

    // Verify the key in that position is free. If not, use linear probing to
    // find the next free slot.
    HashTablePair *pairs = table->pairs;
    while (true) {
        if (pairs[probe_position].key == NULL) {
            break;
        }
        if (obj_eq(pairs[probe_position].key, key)) {
            break;
        }
        if (probe_position == array_cap(pairs)) {
            probe_position = 0;
        } else {
            probe_position++;
        }
    }
    pairs[probe_position].key = (Object *)key;
    pairs[probe_position].value = (Object *)value;
    return;
}

Object *
ht_lookup(const HashTable *table, const Object *key) {
    size_t position = ht_hash(table, key);
    size_t probe_position = position;

    // Verify the key in that position is the same. If not perform linear
    // probing to find it.
    HashTablePair *pairs = table->pairs;
    while (true) {
        if (pairs[probe_position].key == NULL) {
            return NULL;
        }
        if (obj_eq(pairs[probe_position].key, key)) {
            break;
        }
        if (probe_position == array_cap(pairs)) {
            probe_position = 0;
        } else {
            probe_position++;
        }
    }
    return pairs[probe_position].value;
}

void
ht_debug(HashTable *table) {
    HashTablePair *pairs = table->pairs;
    for (size_t i = 0; i < array_cap(pairs); i++) {
        printf("i: %ld  ", i);
        if (pairs[i].key == NULL) {
            printf("EMPTY\n");
        } else {
            printf("key: ");
            display(pairs[i].key);
            printf("  value: ");
            display(pairs[i].value);
            printf("\n");
        }
    }
}

// // Use Fibonacci hashing to map a hash to a value in range of the table.
// static inline
// uint64_t _fibonacci_hash(uint64_t hash, size_t shift_amount) {
//     return (hash * UINT64_C(11400714819323198485)) >> (64 - shift_amount);
// }

// // Hash a null terminated string using a circular shift + XOR hash function.
// static inline
// uint64_t _string_hash(const HashStash *table, const char *key) {
//     uint64_t hash = 0x65d9d65f6a19574f;
//     while (*key) {
//         hash ^= (uint64_t)*key++;
//         hash = (hash << 8) | (hash >> (64 - 8));
//     }
//     return _fibonacci_hash(hash, table->shift_amount);
// }

// // Return the key as an unsigned integer.
// static inline
// uint64_t _number_hash(const HashStash *table, const char *key) {
//     uint64_t hash = 0;
//     memcpy(&hash, key, table->key_length);
//     return _fibonacci_hash(hash, table->shift_amount);
// }

#endif // BDL_HASHTABLE_H