summaryrefslogtreecommitdiffstats
path: root/src/main.c
blob: e74df00ae731ae7b1bf98abc01546202637f6d5b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
#include "shorthand.h"
#include "bd-font.c"
#include "gba-buttons.c"
#include "background-tiles.c"

//
// Memory sections.
//

// Defines for the different memory sections in the GBA.
#define MEM_SROM  0x00000000
#define MEM_EW    0x02000000
#define MEM_IW    0x03000000
#define MEM_IO    0x04000000
#define MEM_PAL   0x05000000
#define MEM_VRAM  0x06000000
#define MEM_OAM   0x07000000
#define MEM_PAK   0x08000000
#define MEM_CART  0x0E000000

//
// Display modes.
//

// Display registers.
#define DISP_CTRL   *((vu32*)(MEM_IO + 0x0000))
#define DISP_STATUS *((vu16*)(MEM_IO + 0x0004))
#define DISP_VCOUNT *((vu16*)(MEM_IO + 0x0006))

// The first three bits in the DISP_CTRL are used to control the video mode.
#define DISP_MODE_0     0x0000
#define DISP_MODE_1     0x0001
#define DISP_MODE_2     0x0002
#define DISP_MODE_3     0x0003
#define DISP_MODE_4     0x0004
#define DISP_MODE_5     0x0005
#define DISP_GB         (1 << 3)
#define DISP_PAGE       (1 << 4)
#define DISP_OAM_HBLANK (1 << 5)
#define DISP_OBJ_1D     (1 << 6)
#define DISP_BLANK      (1 << 7)
#define DISP_BG_0       (1 << 8)
#define DISP_BG_1       (1 << 9)
#define DISP_BG_2       (1 << 10)
#define DISP_BG_3       (1 << 11)
#define DISP_OBJ        (1 << 12)
#define DISP_ENABLE_SPRITES DISP_OBJ | DISP_OBJ_1D

// Registers to control of BG layers.
#define BG_CTRL_0 *((vu16*)(0x04000008 + 0x0002 * 0))
#define BG_CTRL_1 *((vu16*)(0x04000008 + 0x0002 * 1))
#define BG_CTRL_2 *((vu16*)(0x04000008 + 0x0002 * 2))
#define BG_CTRL_3 *((vu16*)(0x04000008 + 0x0002 * 3))

// Bits to control the background.
#define BG_PRIORITY_0     0x0
#define BG_PRIORITY_1     0x1
#define BG_PRIORITY_2     0x2
#define BG_PRIORITY_3     0x3
#define BG_CHARBLOCK(N)   ((N) << 2)
#define BG_MOSAIC         (1 << 6)
#define BG_HIGH_COLOR     (1 << 7)
#define BG_SCREENBLOCK(N) ((N) << 8)
#define BG_AFFINE         (1 << 0xD)
#define BG_SIZE(N)        ((N) << 0xE)

// BG registers for horizontal displacement.
#define BG_H_SCROLL_0 *((vu16*)(0x04000010 + 0x0004 * 0))
#define BG_H_SCROLL_1 *((vu16*)(0x04000010 + 0x0004 * 1))
#define BG_H_SCROLL_2 *((vu16*)(0x04000010 + 0x0004 * 2))
#define BG_H_SCROLL_3 *((vu16*)(0x04000010 + 0x0004 * 3))

// BG registers for vertical displacement.
#define BG_V_SCROLL_0 *((vu16*)(0x04000012 + 0x0004 * 0))
#define BG_V_SCROLL_1 *((vu16*)(0x04000012 + 0x0004 * 1))
#define BG_V_SCROLL_2 *((vu16*)(0x04000012 + 0x0004 * 2))
#define BG_V_SCROLL_3 *((vu16*)(0x04000012 + 0x0004 * 3))

// Screen settings.
#define SCREEN_WIDTH 240
#define SCREEN_HEIGHT 160

// The GBA in mode 3 expects rbg15 colors in the VRAM, where each component
// (RGB) have a 0--31 range. For example, pure red would be rgb15(31, 0, 0).
typedef u16 Color;

//
// Tile memory access.
//

// NOTE: Only defining 4bpp tiles for now.
typedef struct Tile {
    u32 data[8];
} Tile;

typedef Tile TileBlock[512];
#define TILE_MEM ((TileBlock*) MEM_VRAM)

typedef u16 ScreenBlock[1024];
#define SCREENBLOCK_MEM ((ScreenBlock*)MEM_VRAM)

// We can treat the screen as a HxW matrix. With the following macro we can
// write a pixel to the screen at the (x, y) position using:
//
//     FRAMEBUFFER[y][x] = color;
//
typedef Color Scanline[SCREEN_WIDTH];
#define FRAMEBUFFER ((Scanline*)MEM_VRAM)
#define SCREEN_BUFFER ((vu16*) MEM_VRAM)
#define PAL_BUFFER_BG ((vu16*) MEM_PAL)
#define PAL_BUFFER_SPRITES ((vu16*) 0x05000200)

//
// Colors.
//

static inline Color
rgb15(u32 red, u32 green, u32 blue ) {
    return (blue << 10) | (green << 5) | red;
}

#define COLOR_RED   rgb15(31, 0, 12)
#define COLOR_BLUE  rgb15(2, 15, 30)
#define COLOR_CYAN  rgb15(0, 30, 30)
#define COLOR_GREY  rgb15(4, 4, 4)
#define COLOR_BLACK rgb15(0, 0, 0)
#define COLOR_WHITE rgb15(28, 28, 28)

//
// Sprites.
//

// Using macros instead of aligned structs for setting up OBJ attributes and
// affine parameters.
// TODO: Benchmark if this would be slower or the same that TONC's
// implementation.
#define OBJ_ATTR_0(N)    *((vu16*)(MEM_OAM + 0 + 8 * (N)))
#define OBJ_ATTR_1(N)    *((vu16*)(MEM_OAM + 2 + 8 * (N)))
#define OBJ_ATTR_2(N)    *((vu16*)(MEM_OAM + 4 + 8 * (N)))
#define OBJ_AFFINE_PA(N) *((vs16*)(MEM_OAM + 6 + 8 * 0 + 8 * 4 * (N)))
#define OBJ_AFFINE_PB(N) *((vs16*)(MEM_OAM + 6 + 8 * 1 + 8 * 4 * (N)))
#define OBJ_AFFINE_PC(N) *((vs16*)(MEM_OAM + 6 + 8 * 2 + 8 * 4 * (N)))
#define OBJ_AFFINE_PD(N) *((vs16*)(MEM_OAM + 6 + 8 * 3 + 8 * 4 * (N)))

// OBJ_ATTR_0 parameters
#define OBJ_Y_COORD(N)   ((N) & 0xFF)
#define OBJ_NORMAL       (0x00 << 0x8)
#define OBJ_AFFINE       (0x01 << 0x8)
#define OBJ_HIDDEN       (0x02 << 0x8)
#define OBJ_AFFINE_2X    (0x03 << 0x8)
#define OBJ_ALPHA_BLEND  (0x01 << 0xA)
#define OBJ_WINDOW       (0x02 << 0xA)
#define OBJ_SHAPE_SQUARE (0x00 << 0xE)
#define OBJ_SHAPE_WIDE   (0x01 << 0xE)
#define OBJ_SHAPE_TALL   (0x02 << 0xE)

// OBJ_ATTR_1 parameters
#define OBJ_X_COORD(N)    ((N) & 0x1FF)
#define OBJ_AFFINE_IDX(N) ((N) << 0x9)
#define OBJ_H_FLIP        (0x01 << 0xC)
#define OBJ_V_FLIP        (0x01 << 0xD)
#define OBJ_SIZE_SMALL    (0x00 << 0xE)
#define OBJ_SIZE_MID      (0x01 << 0xE)
#define OBJ_SIZE_BIG      (0x02 << 0xE)
#define OBJ_SIZE_HUGE     (0x03 << 0xE)

// OBJ_ATTR_2 parameters
#define OBJ_TILE_INDEX(N) ((N) & 0x3FF)
#define OBJ_PRIORITY(N)   ((N) << 0xA)
#define OBJ_PAL_BANK(N)   ((N) << 0xC)

// Using bd-font, an 8x8 bitmap font.
static void
put_char(int x, int y, Color clr, u8 chr) {
    for (size_t i = 0; i < 8; ++i) {
        for (size_t j = 0; j < 8; ++j) {
            if ((font[chr][i] >> (7 - j)) & 0x1) {
                FRAMEBUFFER[y + i][x + j] = clr;
            }
        }
    }
}

static void
put_text(int x, int y, Color clr, char *msg) {
    int count = 0;
    while (*msg) {
        put_char(x + count, y, clr, *msg++);
        count += 8;
    }
}

// Draws a line with the given color between (x0,y0) and (x1,y1) using the
// Bresenham's line drawing algorithm using exclusively integer arithmetic.
static void
draw_line(int x0, int y0, int x1, int y1, Color clr) {
    // Pointer to the initial position of the screen buffer where we will start
    // writing our data.
    vu16 *destination = (u16*)(SCREEN_BUFFER + y0 * SCREEN_WIDTH + x0);

    // Adjust the step direction and calculate deltas.
    int x_step;
    int y_step;
    int dx;
    int dy;
    if (x0 > x1) {
        x_step = -1;
        dx = x0 - x1;
    } else {
        x_step = 1;
        dx = x1 - x0;
    }
    if (y0 > y1) {
        y_step = -SCREEN_WIDTH;
        dy = y0 - y1;
    } else {
        y_step = +SCREEN_WIDTH;
        dy = y1 - y0;
    }

    if(dy == 0) {
        // Horizontal line.
        for(int i = 0; i <= dx; i++) {
            destination[i * x_step] = clr;
        }
    } else if(dx == 0) {
        // Vertical line.
        for(int i = 0; i <= dy; i++) {
            destination[i * y_step] = clr;
        }
    } else if (dx >= dy){
        // Positive slope.
        int diff = 2 * dy - dx;
        for (int i = 0; i <= dx; ++i) {
            *destination = clr;
            if (diff >= 0) {
                destination += y_step;
                diff -= 2 * dx;
            }
            destination += x_step;
            diff += 2 * dy;
        }
    } else {
        // Negative slope.
        int diff = 2 * dx - dy;
        for (int i = 0; i <= dy; ++i) {
            *destination = clr;
            if (diff >= 0) {
                destination += x_step;
                diff -= 2 * dy;
            }
            destination += y_step;
            diff += 2 * dx;
        }
    }
}

static inline void
draw_rect(int x0, int y0, int x1, int y1, Color clr) {
    if (x0 > x1) {
        int tmp = x0;
        x0 = x1;
        x1 = tmp;
    }
    if (y0 > y1) {
        int tmp = y0;
        y0 = y1;
        y1 = tmp;
    }
    int dx = x1 - x0;
    int dy = y1 - y0;
    for (int i = 0; i <= dx; ++i) {
        int x = x0 + i;
        FRAMEBUFFER[y0][x] = clr;
        FRAMEBUFFER[y1][x] = clr;
    }
    for (int j = 0; j <= dy; ++j) {
        int y = y0 + j;
        FRAMEBUFFER[y][x0] = clr;
        FRAMEBUFFER[y][x1] = clr;
    }
}

static inline void
draw_fill_rect(int x0, int y0, int x1, int y1, Color clr) {
    if (x0 > x1) {
        int tmp = x0;
        x0 = x1;
        x1 = tmp;
    }
    if (y0 > y1) {
        int tmp = y0;
        y0 = y1;
        y1 = tmp;
    }
    int dx = x1 - x0;
    int dy = y1 - y0;
    for (int i = 0; i <= dx; ++i) {
        for (int j = 0; j <= dy; ++j) {
            int x = x0 + i;
            int y = y0 + j;
            FRAMEBUFFER[y][x] = clr;
        }
    }
}

static inline void
wait_vsync(void) {
    while(DISP_VCOUNT >= 160);
    while(DISP_VCOUNT < 160);
}

//
// Main functions.
//

// In Mode4 the buffer is of 8 bytes per pixel instead of 16. We can't write the
// color directly, instead the color is stored in the palette memory at
// `MEM_PAL`. Note that in this mode MEM_PAL[0] is the background color. This
// plotter takes an index to a color stored in MEM_PAL[col_index]. Because the
// GBA needs to meet memory alignment requirements, we can't write a u8 into
// memory, instead we need to read a u16 word, mask and or the corresponding
// bits and wave the updated u16.
static void
put_pixel_m4(int x, int y, u8 col_index, vu16 *buffer) {
    int buffer_index = (y * SCREEN_WIDTH + x) / 2;
    vu16 *destination = &buffer[buffer_index];
    // Odd pixels will go to the top 8 bits of the destination. Even pixels to
    // the lower 8 bits.
    int odd = x & 0x1;
    if(odd) {
        *destination= (*destination & 0xFF) | (col_index << 8);
    } else {
        *destination= (*destination & ~0xFF) |  col_index;
    }
}

static void
draw_fill_rect_m4(int x0, int y0, int x1, int y1, u8 col_index, vu16 *buffer) {
    int ix, iy;
    for(iy = y0; iy < y1; iy++) {
        for(ix = x0; ix < x1; ix++) {
            put_pixel_m4(ix, iy, col_index, buffer);
        }
    }
}

static inline void
flip_page(void) {
    DISP_CTRL ^= DISP_PAGE;
}

#define SCREEN_PAGE_1 ((vu16*) MEM_VRAM)
#define SCREEN_PAGE_2 ((vu16*) (MEM_VRAM + 0xa000))

//
// Profiling.
//

#define TIMER_DATA_0  *((vu16*) (0x04000100 + 0x04 * 0))
#define TIMER_DATA_1  *((vu16*) (0x04000100 + 0x04 * 1))
#define TIMER_DATA_2  *((vu16*) (0x04000100 + 0x04 * 2))
#define TIMER_DATA_3  *((vu16*) (0x04000100 + 0x04 * 3))
#define TIMER_CTRL_0  *((vu16*) (0x04000102 + 0x04 * 0))
#define TIMER_CTRL_1  *((vu16*) (0x04000102 + 0x04 * 1))
#define TIMER_CTRL_2  *((vu16*) (0x04000102 + 0x04 * 2))
#define TIMER_CTRL_3  *((vu16*) (0x04000102 + 0x04 * 3))

// Timer control bits.
#define TIMER_CTRL_FREQ_0   0
#define TIMER_CTRL_FREQ_1   1
#define TIMER_CTRL_FREQ_2   2
#define TIMER_CTRL_FREQ_3   3
#define TIMER_CTRL_CASCADE (1 << 2)
#define TIMER_CTRL_IRQ     (1 << 6)
#define TIMER_CTRL_ENABLE  (1 << 7)

// We use timers 2 and 3 to count the number of cycles since the profile_start
// functions is called. Don't use if the code we are trying to profile make use
// of these timers.
static inline
void profile_start(void) {
    TIMER_DATA_2 = 0;
    TIMER_DATA_3 = 0;
    TIMER_CTRL_2 = 0;
    TIMER_CTRL_3 = 0;
    TIMER_CTRL_3 = TIMER_CTRL_ENABLE | TIMER_CTRL_CASCADE;
    TIMER_CTRL_2 = TIMER_CTRL_ENABLE;
}

static inline
u32 profile_stop(void) {
   TIMER_CTRL_2 = 0;
   return (TIMER_DATA_3 << 16) | TIMER_DATA_2;
}

//
// Input handling.
//

// Memory address for key input register
#define KEY_INPUTS *((vu16*) 0x04000130)

// Alias for key pressing bits.
#define KEY_A      (1 << 0)
#define KEY_B      (1 << 1)
#define KEY_SELECT (1 << 2)
#define KEY_START  (1 << 3)
#define KEY_RIGHT  (1 << 4)
#define KEY_LEFT   (1 << 5)
#define KEY_UP     (1 << 6)
#define KEY_DOWN   (1 << 7)
#define KEY_R      (1 << 8)
#define KEY_L      (1 << 9)

#define KEY_MASK 0x03FF

// Saving the previous and current key states as globals for now.
static u16 key_curr = 0;
static u16 key_prev = 0;

static inline void
poll_keys(void) {
    key_prev = key_curr;
    key_curr = ~KEY_INPUTS & KEY_MASK;
}

// Returns true if the given key has been pressed at time of calling and was not
// pressed since the previous call. For example, if a key is being held, this
// function will return `true` only on the frame where the key initially
// activated.
static inline u32
key_pressed(u32 key) {
    return (key_curr & key) & ~(key_prev & key);
}

// Check if the given key is pressed and has been since at least one frame.
static inline u32
key_hold(u32 key) {
    return (key_curr & key) & key_prev & key;
}

// Check if the given key/button is currently pressed.
#define KEY_PRESSED(key) (~(KEY_INPUTS) & key)

void
draw_logo(void) {
    int side = 60;
    int line = 35;
    int height = side * 0.5;
    int x = SCREEN_WIDTH / 2 - height / 2;
    int y = SCREEN_HEIGHT / 2;

    // Draw red triangle.
    draw_line(x + height - 1, y - side / 2, x, y - 1, COLOR_RED);
    draw_line(x + height - 1, y + side / 2, x, y + 1, COLOR_RED);
    draw_line(x + height - 1, y - side / 2 + 1, x, y, COLOR_RED);
    draw_line(x + height - 1, y + side / 2 - 1, x, y, COLOR_RED);

    // Draw white triangle.
    draw_line(x, y - side / 2, x, y + side / 2, COLOR_WHITE);
    draw_line(x + 1, y - side / 2, x + height, y - 1, COLOR_WHITE);
    draw_line(x + 1, y + side / 2, x + height, y + 1, COLOR_WHITE);

    // Draw white line at triangle tip.
    draw_line(x + height, y - side / 2, x + height, y + side / 2, COLOR_WHITE);
    draw_line(x + height + 1, y - side / 2, x + height + 1, y + side / 2, COLOR_WHITE);

    // Double triangle line.
    draw_line(x - 1, y - side / 2, x - 1, y + side / 2, COLOR_WHITE);
    draw_line(x + 1, y - side / 2 + 1, x + height, y, COLOR_WHITE);
    draw_line(x + 1, y + side / 2 - 1, x + height, y, COLOR_WHITE);

    // Draw white lines.
    draw_line(x - line, y, x, y, COLOR_WHITE);
    draw_line(x + height, y, x + height + line, y, COLOR_WHITE);
    draw_line(x - line, y + 1, x, y + 1, COLOR_WHITE);
    draw_line(x + height, y + 1, x + height + line, y + 1, COLOR_WHITE);
}

void
copy_font_to_tile_memory(Tile *tile) {
    // Hex to bits translation table.
    const u32 conversion_u32[16] = {
        0x00000000, 0x00001000, 0x00000100, 0x00001100,
        0x00000010, 0x00001010, 0x00000110, 0x00001110,
        0x00000001, 0x00001001, 0x00000101, 0x00001101,
        0x00000011, 0x00001011, 0x00000111, 0x00001111,
    };
    for (size_t i = 0; i < 250; ++i) {
        for (size_t j = 0; j < 8; ++j) {
            u8 row = font[i][j];
            u32 tile_idx = 0x00000000;
            tile_idx = conversion_u32[row & 0xF] << 16;
            tile_idx |= conversion_u32[(row >> 4) & 0xF];
            (tile + i)->data[j] = tile_idx;
        }
    }
}


u32
unpack_1bb(u8 hex) {
    const u32 conversion_u32[16] = {
        0x00000000, 0x00000001, 0x00000010, 0x00000011,
        0x00000100, 0x00000101, 0x00000110, 0x00000111,
        0x00001000, 0x00001001, 0x00001010, 0x00001011,
        0x00001100, 0x00001101, 0x00001110, 0x00001111,
    };
    u8 low = hex & 0xF;
    u8 high = (hex >> 4) & 0xF;
    return (conversion_u32[high] << 16) | conversion_u32[low];
}

typedef struct Sprite {
    // A unique sprite identifier.
    size_t id;
    // The number of tiles for a single sprite frame.
    size_t n_tiles;
    // The starting tile of this sprite.
    size_t tile_start;
    // The associated palette bank for this sprite.
    size_t pal_bank;
} Sprite;

typedef struct ButtonSprite {
    int id;
    int x;
    int y;
    int frame;
    BtnState state;
} ButtonSprite;

typedef struct MultiSprite {
    ObjState *sprites;
    AnimationEntry **animations;
    int frame;
    size_t n_obj;
    size_t n_frames;
    BtnState state;
} MultiSprite;

#define NUM_SPRITES 128

Sprite sprites[NUM_SPRITES];

// Keeping track of unique sprites and current sprite memory pointer using
// global singletons.
size_t sprite_counter = 0;
size_t sprite_tile_counter = 0;
u32 *sprite_memory = NULL;

// Loads the sprite data into video memory and initialize the Sprite structure.
size_t
load_sprite_data(u32 *sprite_data, size_t n_tiles, size_t n_frames) {
    memcpy(sprite_memory, sprite_data, 8 * n_tiles * n_frames * sizeof(u32));
    sprite_memory += 8 * n_tiles * n_frames;
    Sprite sprite = {
        .id = sprite_counter,
        .n_tiles = n_tiles,
        .tile_start = sprite_tile_counter,
    };
    sprite_tile_counter += n_tiles * n_frames;
    sprites[sprite_counter] = sprite;
    return sprite_counter++;
}

size_t
load_packed_sprite_data(u32 *sprite_data, size_t n_tiles, size_t n_frames) {
    size_t counter = 0;
    for (size_t i = 0; i < 8 * n_tiles * n_frames / 4; ++i) {
        u32 hex = sprite_data[i];
        sprite_memory[counter++] = unpack_1bb((hex >> 24) & 0xFF);
        sprite_memory[counter++] = unpack_1bb((hex >> 16) & 0xFF);
        sprite_memory[counter++] = unpack_1bb((hex >> 8) & 0xFF);
        sprite_memory[counter++] = unpack_1bb((hex) & 0xFF);
    }
    sprite_memory += 8 * n_tiles * n_frames;
    Sprite sprite = {
        .id = sprite_counter,
        .n_tiles = n_tiles,
        .tile_start = sprite_tile_counter,
    };
    sprite_tile_counter += n_tiles * n_frames;
    sprites[sprite_counter] = sprite;
    return sprite_counter++;
}

void
init_button_sprite(MultiSprite *btn) {
    for (size_t i = 0; i < btn->n_obj; ++i) {
        btn->sprites[i].id = load_packed_sprite_data(
                btn->sprites[i].data,
                btn->sprites[i].n_tiles,
                btn->sprites[i].frames);
        btn->sprites[i].base_tile = sprites[btn->sprites[i].id].tile_start;
    }
}

void
button_tick(MultiSprite *btn) {
    // Nothing to do here.
    if (btn->state == BTN_STATE_IDLE) {
        return;
    }

    // Reset animation state.
    if (btn->state == BTN_STATE_PRESSED && btn->frame != 0) {
        btn->frame = 0;
    }

    // Continue the animation.
    if (btn->state == BTN_STATE_HOLD || btn->state == BTN_STATE_PRESSED ) {
        if(btn->frame < btn->n_frames - 1) {
            btn->frame++;
        }
    }

    // Finish the animation and return to idle.
    if (btn->state == BTN_STATE_RELEASED) {
        if (btn->frame > 0 && btn->frame < btn->n_frames - 1) {
            btn->frame++;
        } else {
            btn->frame = 0;
            btn->state = BTN_STATE_IDLE;
        }
    }
    for (size_t i = 0; i < btn->n_obj; ++i) {
        AnimationEntry anim_frame = btn->animations[i][btn->frame];
        int x = btn->sprites[i].x + anim_frame.x_offset;
        int y = btn->sprites[i].y + anim_frame.y_offset;
        int base_tile = btn->sprites[i].base_tile + anim_frame.tile_offset;

        // Clear the previous x/y coordinate and base tiles.
        btn->sprites[i].obj_attr_0 &= ~0xFF;
        btn->sprites[i].obj_attr_1 &= ~0x1FF;
        btn->sprites[i].obj_attr_2 &= ~0x3FF;

        // Update x/y/tile and hidden state from the animations.
        btn->sprites[i].obj_attr_0 |= OBJ_Y_COORD(y);
        btn->sprites[i].obj_attr_1 |= OBJ_X_COORD(x);
        btn->sprites[i].obj_attr_2 |= base_tile;
        if (anim_frame.hidden) {
            btn->sprites[i].obj_attr_0 |= OBJ_HIDDEN;
        } else {
            btn->sprites[i].obj_attr_0 &= ~OBJ_HIDDEN;
        }

        // Update OBJ attributes.
        OBJ_ATTR_0(btn->sprites[i].id) = btn->sprites[i].obj_attr_0;
        OBJ_ATTR_1(btn->sprites[i].id) = btn->sprites[i].obj_attr_1;
        OBJ_ATTR_2(btn->sprites[i].id) = btn->sprites[i].obj_attr_2;
    }
}

int main(void) {

    // Add colors to the sprite color palette. Tiles with color number 0 are
    // treated as transparent.
    for (size_t i = 0; i < 16; ++i) {
        PAL_BUFFER_SPRITES[i] = COLOR_WHITE;
    }

    // Initialize all attributes by disabling rendering. If we don't do this,
    // glitches may appear.
    for (size_t i = 0; i < 128; ++i) {
        OBJ_ATTR_0(i) = (1 << 9);
    }

    sprite_tile_counter = 0;
    sprite_memory = &TILE_MEM[4][sprite_tile_counter];

    // Load background palette.
    memcpy(&PAL_BUFFER_BG[0], &bg_palette, 512);
    memcpy(&TILE_MEM[0][0], bg_data, 3168);
    memcpy(&SCREENBLOCK_MEM[30][0], bg_map, 2048);

    // Configure BG0 to use 4bpp, 64x32 tile map in charblock 0 and screenblock
    // 31.
    BG_CTRL_0 = BG_CHARBLOCK(0) | BG_SCREENBLOCK(30) | BG_SIZE(0);
    BG_H_SCROLL_0 = 0;
    BG_V_SCROLL_0 = 0;

    // Configure the display in mode 0 to show OBJs, where tile memory is
    // sequential.
    DISP_CTRL = DISP_ENABLE_SPRITES | DISP_MODE_0 | DISP_BG_0;

    // Initialize the A/B button sprites.
    int buttons_x = SCREEN_WIDTH / 2;
    int buttons_y = SCREEN_HEIGHT / 2;
    ButtonSprite btn_b = {
        .id = load_packed_sprite_data(&gba_btn_b_data, 4, 1),
        .x = buttons_x + 32,
        .y = buttons_y + 32,
        .frame = 0,
        .state = BTN_STATE_IDLE,
    };
    OBJ_ATTR_0(btn_b.id) = btn_b.y;
    OBJ_ATTR_1(btn_b.id) = btn_b.x | (1 << 0xE);
    OBJ_ATTR_2(btn_b.id) = sprites[btn_b.id].tile_start;

    ButtonSprite btn_a = {
        .id = load_packed_sprite_data(&gba_btn_a_data, 4, 1),
        .x = buttons_x + 32 + 20,
        .y = buttons_y + 32 - 16,
        .frame = 0,
        .state = BTN_STATE_IDLE,
    };
    OBJ_ATTR_0(btn_a.id) = btn_a.y;
    OBJ_ATTR_1(btn_a.id) = btn_a.x | (1 << 0xE);
    OBJ_ATTR_2(btn_a.id) = sprites[btn_a.id].tile_start;

    ButtonSprite btn_up = {
        .id = load_packed_sprite_data(&gba_btn_updown_data, 4, 1),
        .x = buttons_x - 64 - 16,
        .y = buttons_y + 32 - 18,
        .frame = 0,
        .state = BTN_STATE_IDLE,
    };
    OBJ_ATTR_0(btn_up.id) = btn_up.y;
    OBJ_ATTR_1(btn_up.id) = btn_up.x | (1 << 0xE);
    OBJ_ATTR_2(btn_up.id) = sprites[btn_up.id].tile_start;

    ButtonSprite btn_left = {
        .id = load_packed_sprite_data(&gba_btn_leftright_data, 4, 1),
        .x = buttons_x - 64 - 16 - 10,
        .y = buttons_y + 32 - 10,
        .frame = 0,
        .state = BTN_STATE_IDLE,
    };
    OBJ_ATTR_0(btn_left.id) = btn_left.y;
    OBJ_ATTR_1(btn_left.id) = btn_left.x | (1 << 0xE);
    OBJ_ATTR_2(btn_left.id) = sprites[btn_left.id].tile_start;

    ButtonSprite btn_right = {
        .id = load_packed_sprite_data(&gba_btn_leftright_data, 4, 1),
        .x = buttons_x - 64 - 16 + 11,
        .y = buttons_y + 32 - 10,
        .frame = 0,
        .state = BTN_STATE_IDLE,
    };
    OBJ_ATTR_0(btn_right.id) = btn_right.y;
    OBJ_ATTR_1(btn_right.id) = btn_right.x | (1 << 0xE) | (1 << 0xC);
    OBJ_ATTR_2(btn_right.id) = sprites[btn_right.id].tile_start;

    ButtonSprite btn_l = {
        .id = load_packed_sprite_data(&gba_btn_l_data, 2, 1),
        .x = buttons_x - 64 - 28,
        .y = buttons_y - 32 - 20,
        .frame = 0,
        .state = BTN_STATE_IDLE,
    };
    OBJ_ATTR_0(btn_l.id) = btn_l.y | (1 << 0xE);
    OBJ_ATTR_1(btn_l.id) = btn_l.x;
    OBJ_ATTR_2(btn_l.id) = sprites[btn_l.id].tile_start;

    ButtonSprite btn_r = {
        .id = load_packed_sprite_data(&gba_btn_r_data, 2, 1),
        .x = buttons_x + 32 + 20,
        .y = buttons_y - 32 - 20,
        .frame = 0,
        .state = BTN_STATE_IDLE,
    };
    OBJ_ATTR_0(btn_r.id) = btn_r.y | (1 << 0xE);
    OBJ_ATTR_1(btn_r.id) = btn_r.x;
    OBJ_ATTR_2(btn_r.id) = sprites[btn_r.id].tile_start;

    ButtonSprite btn_start = {
        .id = load_packed_sprite_data(&gba_btn_startselect_data, 2, 2),
        .x = buttons_x - 10,
        .y = buttons_y + 40,
        .frame = 0,
        .state = BTN_STATE_IDLE,
    };
    OBJ_ATTR_0(btn_start.id) = btn_start.y | (1 << 0xE);
    OBJ_ATTR_1(btn_start.id) = btn_start.x;
    OBJ_ATTR_2(btn_start.id) = sprites[btn_start.id].tile_start;

    ButtonSprite btn_select = {
        .id = load_packed_sprite_data(&gba_btn_startselect_data, 2, 2),
        .x = buttons_x - 32,
        .y = buttons_y + 40,
        .frame = 0,
        .state = BTN_STATE_IDLE,
    };
    OBJ_ATTR_0(btn_select.id) = btn_select.y | (1 << 0xE);
    OBJ_ATTR_1(btn_select.id) = btn_select.x;
    OBJ_ATTR_2(btn_select.id) = sprites[btn_select.id].tile_start;

    MultiSprite buttons[] = {
        {
            .frame = 0,
            .n_obj = 3,
            .n_frames = 8,
            .state = BTN_STATE_RELEASED,
            .animations = &btn_down_animation,
            .sprites = &(ObjState[]){
                {
                    .id = 0,
                    .x = buttons_x - 64 - 16,
                    .y = buttons_y + 29,
                    .data = &gba_btn_updown_data,
                    .n_tiles = 4,
                    .frames = 1,
                    .obj_attr_0 = 0,
                    .obj_attr_1 = OBJ_V_FLIP | OBJ_SIZE_MID,
                    .obj_attr_2 = 0
                },
                {
                    .id = 0,
                    .x = buttons_x - 64 - 16,
                    .y = buttons_y + 29,
                    .data = &gba_btn_down_shadow_data,
                    .n_tiles = 2,
                    .frames = 1,
                    .obj_attr_0 = OBJ_SHAPE_WIDE,
                    .obj_attr_1 = OBJ_SIZE_SMALL,
                    .obj_attr_2 = 0
                },
                {
                    .id = 0,
                    .x = buttons_x - 64 - 16,
                    .y = buttons_y + 29,
                    .data = &gba_btn_fx_downup,
                    .n_tiles = 4,
                    .frames = 4,
                    .obj_attr_0 = OBJ_SHAPE_WIDE,
                    .obj_attr_1 = OBJ_SIZE_MID,
                    .obj_attr_2 = 0
                },
            },
        },
    };
    for (size_t i = 0; i < sizeof(buttons) / sizeof(MultiSprite); ++i) {
        init_button_sprite(&buttons[i]);
    }

    int frame_counter = 0;
    int x = 0;
    int y = 0;
    while(true) {
        wait_vsync();
        poll_keys();

        // if (key_pressed(KEY_B)) {
        //     btn_b.frame = 0;
        //     btn_b.state = BTN_STATE_PRESSED;
        // } else if (key_hold(KEY_B)) {
        //     if (btn_b.frame < btn_b.n_frames - 1) {
        //         btn_b.frame++;
        //     }
        // } else {
        //     // Finish the animation and reset idle state.
        //     if (btn_b.frame > 0 && btn_b.frame < btn_b.n_frames - 1) {
        //         btn_b.frame++;
        //     } else {
        //         btn_b.frame = 0;
        //         btn_b.state = BTN_STATE_IDLE;
        //     }
        // }
        // if (key_pressed(KEY_A)) {
        //     btn_a.frame = 0;
        //     btn_a.state = BTN_STATE_PRESSED;
        // } else if (key_hold(KEY_A)) {
        //     size_t n_frames = animation_states[btn_a.state]->n_frames;
        //     if (btn_a.frame < n_frames - 1) {
        //         btn_a.frame++;
        //     }
        // } else {
        //     // Finish the animation and reset idle state.
        //     size_t n_frames = animation_states[btn_a.state]->n_frames;
        //     if (btn_a.frame > 0 && btn_a.frame < n_frames - 1) {
        //         btn_a.frame++;
        //     } else {
        //         btn_a.frame = 0;
        //         btn_a.state = BTN_STATE_IDLE;
        //     }
        // }
        if (key_pressed(KEY_DOWN)) {
            buttons[0].state = BTN_STATE_PRESSED;
        } else if (key_hold(KEY_DOWN)) {
            buttons[0].state = BTN_STATE_HOLD;
        } else {
            buttons[0].state = BTN_STATE_RELEASED;
        }

        if (key_hold(KEY_DOWN)) {
            y += 3;
        }
        if (key_hold(KEY_UP)) {
            y -= 3;
        }
        if (key_hold(KEY_LEFT)) {
            x -= 3;
        }
        if (key_hold(KEY_RIGHT)) {
            x += 3;
        }

        // OBJ_ATTR_2(btn_b.id) = sprites[btn_b.id].tile_start + animation_states[btn_b.state]->tile_offsets[btn_b.frame];
        // OBJ_ATTR_2(btn_a.id) = sprites[btn_a.id].tile_start + animation_states[btn_a.state]->tile_offsets[btn_a.frame];
        // OBJ_ATTR_2(btn_up.id) = sprites[btn_up.id].tile_start + animation_states[btn_up.state]->tile_offsets[btn_up.frame];
        // // OBJ_ATTR_2(btn_down.id) = sprites[btn_down.id].tile_start + animation_states[btn_down.state]->tile_offsets[btn_down.frame];
        // OBJ_ATTR_2(btn_left.id) = sprites[btn_left.id].tile_start + animation_states[btn_left.state]->tile_offsets[btn_left.frame];
        // OBJ_ATTR_2(btn_right.id) = sprites[btn_right.id].tile_start + animation_states[btn_right.state]->tile_offsets[btn_right.frame];
        // OBJ_ATTR_2(btn_l.id) = sprites[btn_l.id].tile_start + animation_states[btn_l.state]->tile_offsets[btn_l.frame];
        // OBJ_ATTR_2(btn_r.id) = sprites[btn_r.id].tile_start + animation_states[btn_r.state]->tile_offsets[btn_r.frame];
        frame_counter++;
        BG_H_SCROLL_0 = x;
        BG_V_SCROLL_0 = y;

        for (size_t i = 0; i < sizeof(buttons) / sizeof(MultiSprite); ++i) {
            button_tick(&buttons[i]);
        }
    };

    return 0;
}