/* Copyright (c) 2021 Bad Diode Permission to use, copy, modify, and distribute this software for any purpose with or without fee is hereby granted, provided that the above copyright notice and this permission notice appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE. */ #ifndef GBAEXP_COMMON_H #define GBAEXP_COMMON_H #include "shorthand.h" #define CPU_FREQUENCY (2 << 23) // // Memory sections. // // Defines for the different memory sections in the GBA. #define MEM_SROM 0x00000000 #define MEM_EW 0x02000000 #define MEM_IW 0x03000000 #define MEM_IO 0x04000000 #define MEM_PAL 0x05000000 #define MEM_VRAM 0x06000000 #define MEM_OAM 0x07000000 #define MEM_PAK 0x08000000 #define MEM_CART 0x0E000000 // // Display modes. // // Display registers. #define DISP_CTRL *((vu32*)(MEM_IO + 0x0000)) #define DISP_STATUS *((vu16*)(MEM_IO + 0x0004)) #define DISP_VCOUNT *((vu16*)(MEM_IO + 0x0006)) // The first three bits in the DISP_CTRL are used to control the video mode. #define DISP_MODE_0 0x0000 #define DISP_MODE_1 0x0001 #define DISP_MODE_2 0x0002 #define DISP_MODE_3 0x0003 #define DISP_MODE_4 0x0004 #define DISP_MODE_5 0x0005 #define DISP_GB (1 << 3) #define DISP_PAGE (1 << 4) #define DISP_OAM_HBLANK (1 << 5) #define DISP_OBJ_1D (1 << 6) #define DISP_BLANK (1 << 7) #define DISP_BG_0 (1 << 8) #define DISP_BG_1 (1 << 9) #define DISP_BG_2 (1 << 10) #define DISP_BG_3 (1 << 11) #define DISP_OBJ (1 << 12) #define DISP_ENABLE_SPRITES DISP_OBJ | DISP_OBJ_1D // These bits are used to control the DISP_STATUS register. #define DISP_VBLANK_STATUS (1 << 0x0) #define DISP_HBLANK_STATUS (1 << 0x1) #define DISP_VCOUNT_STATUS (1 << 0x2) #define DISP_VBLANK_IRQ (1 << 0x3) #define DISP_HBLANK_IRQ (1 << 0x4) #define DISP_VCOUNT_IRQ (1 << 0x5) #define DISP_VCOUNT_TRIGGER(N) ((N) << 0x8) // Registers to control of BG layers. #define BG_CTRL(N) *((vu16*)(0x04000008 + 0x0002 * (N))) // Bits to control the background. #define BG_PRIORITY(N) ((N) & 0x3) #define BG_CHARBLOCK(N) ((N) << 2) #define BG_MOSAIC (1 << 6) #define BG_HIGH_COLOR (1 << 7) #define BG_SCREENBLOCK(N) ((N) << 8) #define BG_AFFINE (1 << 0xD) #define BG_SIZE(N) ((N) << 0xE) // BG registers for horizontal displacement. #define BG_H_SCROLL_0 *((vu16*)(0x04000010 + 0x0004 * 0)) #define BG_H_SCROLL_1 *((vu16*)(0x04000010 + 0x0004 * 1)) #define BG_H_SCROLL_2 *((vu16*)(0x04000010 + 0x0004 * 2)) #define BG_H_SCROLL_3 *((vu16*)(0x04000010 + 0x0004 * 3)) // BG registers for vertical displacement. #define BG_V_SCROLL_0 *((vu16*)(0x04000012 + 0x0004 * 0)) #define BG_V_SCROLL_1 *((vu16*)(0x04000012 + 0x0004 * 1)) #define BG_V_SCROLL_2 *((vu16*)(0x04000012 + 0x0004 * 2)) #define BG_V_SCROLL_3 *((vu16*)(0x04000012 + 0x0004 * 3)) // Screen settings. #define SCREEN_WIDTH 240 #define SCREEN_HEIGHT 160 // // Colors. // // The GBA in mode 3 expects rbg15 colors in the VRAM, where each component // (RGB) have a 0--31 range. For example, pure red would be rgb15(31, 0, 0). typedef u16 Color; // A palette is composed of 16 colors, with color at index 0 being transparent // for sprites. typedef Color Palette[16]; // Inline function to calculate the 15 bit color value. static inline Color rgb15(u32 red, u32 green, u32 blue ) { return (blue << 10) | (green << 5) | red; } // Some nice default colors. #define COLOR_RED rgb15(31, 0, 12) #define COLOR_BLUE rgb15(2, 15, 30) #define COLOR_CYAN rgb15(0, 30, 30) #define COLOR_GREY rgb15(12, 12, 12) #define COLOR_BLACK rgb15(0, 0, 0) #define COLOR_WHITE rgb15(28, 28, 28) // // Tile memory access. // // NOTE: Only defining 4bpp tiles for now. typedef struct Tile { u32 row[8]; } Tile; // Screenblocks and charblocks (tile blocks). typedef Tile TileBlock[512]; #define TILE_MEM ((TileBlock*) MEM_VRAM) typedef u16 ScreenBlock[1024]; #define SCREENBLOCK_MEM ((ScreenBlock*)MEM_VRAM) // Screenblock entry bits. #define SCREENBLOCK_ENTRY_H_FLIP (1 << 0xA) #define SCREENBLOCK_ENTRY_V_FLIP (1 << 0xB) #define SCREENBLOCK_ENTRY_PAL(N) ((N) << 0xC) size_t se_index(size_t tile_x, size_t tile_y, size_t map_width) { size_t sbb = ((tile_x >> 5) + (tile_y >> 5) * (map_width >> 5)); return sbb * 1024 + ((tile_x & 31) + (tile_y & 31) * 32); } // We can treat the screen as a HxW matrix. With the following macro we can // write a pixel to the screen at the (x, y) position using: // // FRAMEBUFFER[y][x] = color; // typedef Color Scanline[SCREEN_WIDTH]; #define FRAMEBUFFER ((Scanline*) MEM_VRAM) #define SCREEN_BUFFER ((u16*) MEM_VRAM) #define PAL_BUFFER_BG ((u16*) MEM_PAL) #define PAL_BUFFER_SPRITES ((u16*)(MEM_PAL + 0x200)) #define PAL_BANK_BG ((Palette*) MEM_PAL) #define PAL_BANK_SPRITES ((Palette*)(MEM_PAL + 0x200)) static vu16 *backbuffer = ((vu16*)(MEM_VRAM + 0x0A000)); // // Sprites. // // Using macros instead of aligned structs for setting up OBJ attributes and // affine parameters. // TODO: Benchmark if this would be slower or the same that TONC's // implementation. // TODO: Cleanup OBJ/OAM memory copying and access. #define OBJ_ATTR_0(N) *((vu16*)(MEM_OAM + 0 + 8 * (N))) #define OBJ_ATTR_1(N) *((vu16*)(MEM_OAM + 2 + 8 * (N))) #define OBJ_ATTR_2(N) *((vu16*)(MEM_OAM + 4 + 8 * (N))) #define OBJ_AFFINE_PA(N) *((vs16*)(MEM_OAM + 6 + 8 * 0 + 8 * 4 * (N))) #define OBJ_AFFINE_PB(N) *((vs16*)(MEM_OAM + 6 + 8 * 1 + 8 * 4 * (N))) #define OBJ_AFFINE_PC(N) *((vs16*)(MEM_OAM + 6 + 8 * 2 + 8 * 4 * (N))) #define OBJ_AFFINE_PD(N) *((vs16*)(MEM_OAM + 6 + 8 * 3 + 8 * 4 * (N))) // OBJ_ATTR_0 parameters #define OBJ_Y_COORD(N) ((N) & 0xFF) #define OBJ_NORMAL (0x00 << 0x8) #define OBJ_AFFINE (0x01 << 0x8) #define OBJ_HIDDEN (0x02 << 0x8) #define OBJ_AFFINE_2X (0x03 << 0x8) #define OBJ_ALPHA_BLEND (0x01 << 0xA) #define OBJ_WINDOW (0x02 << 0xA) #define OBJ_SHAPE_SQUARE (0x00 << 0xE) #define OBJ_SHAPE_WIDE (0x01 << 0xE) #define OBJ_SHAPE_TALL (0x02 << 0xE) // OBJ_ATTR_1 parameters #define OBJ_X_COORD(N) ((N) & 0x1FF) #define OBJ_AFFINE_IDX(N) ((N) << 0x9) #define OBJ_H_FLIP (0x01 << 0xC) #define OBJ_V_FLIP (0x01 << 0xD) #define OBJ_SIZE_SMALL (0x00 << 0xE) #define OBJ_SIZE_MID (0x01 << 0xE) #define OBJ_SIZE_BIG (0x02 << 0xE) #define OBJ_SIZE_HUGE (0x03 << 0xE) // OBJ_ATTR_2 parameters #define OBJ_TILE_INDEX(N) ((N) & 0x3FF) #define OBJ_PRIORITY(N) ((N) << 0xA) #define OBJ_PAL_BANK(N) ((N) << 0xC) // // Mode 4 page flipping // static inline void flip_page(void) { backbuffer = (u16*)((u32)backbuffer ^ 0x0A000); DISP_CTRL ^= DISP_PAGE; } #define SCREEN_PAGE_1 ((vu16*) MEM_VRAM) #define SCREEN_PAGE_2 ((vu16*) (MEM_VRAM + 0xa000)) // // Profiling. // #define TIMER_DATA_0 *((vu16*) (0x04000100 + 0x04 * 0)) #define TIMER_DATA_1 *((vu16*) (0x04000100 + 0x04 * 1)) #define TIMER_DATA_2 *((vu16*) (0x04000100 + 0x04 * 2)) #define TIMER_DATA_3 *((vu16*) (0x04000100 + 0x04 * 3)) #define TIMER_CTRL_0 *((vu16*) (0x04000102 + 0x04 * 0)) #define TIMER_CTRL_1 *((vu16*) (0x04000102 + 0x04 * 1)) #define TIMER_CTRL_2 *((vu16*) (0x04000102 + 0x04 * 2)) #define TIMER_CTRL_3 *((vu16*) (0x04000102 + 0x04 * 3)) // Timer control bits. #define TIMER_CTRL_FREQ_0 0 #define TIMER_CTRL_FREQ_1 1 #define TIMER_CTRL_FREQ_2 2 #define TIMER_CTRL_FREQ_3 3 #define TIMER_CTRL_CASCADE (1 << 2) #define TIMER_CTRL_IRQ (1 << 6) #define TIMER_CTRL_ENABLE (1 << 7) #define TIMER_CTRL_DISABLE (0 << 7) // We use timers 2 and 3 to count the number of cycles since the profile_start // functions is called. Don't use if the code we are trying to profile make use // of these timers. static inline void profile_start(void) { TIMER_DATA_2 = 0; TIMER_DATA_3 = 0; TIMER_CTRL_2 = 0; TIMER_CTRL_3 = 0; TIMER_CTRL_3 = TIMER_CTRL_ENABLE | TIMER_CTRL_CASCADE; TIMER_CTRL_2 = TIMER_CTRL_ENABLE; } static inline u32 profile_stop(void) { TIMER_CTRL_2 = 0; return (TIMER_DATA_3 << 16) | TIMER_DATA_2; } static inline u32 profile_measure(void) { return (TIMER_DATA_3 << 16) | TIMER_DATA_2; } // // Input handling. // // Memory address for key input and control register #define KEY_INPUTS *((vu16*) 0x04000130) #define KEY_CTRL *((vu16*) 0x04000132) // Key control register bits. #define KEY_IRQ_KEY(N) (N) #define KEY_IRQ (1 << 0xE) #define KEY_IRQ_IF_SET (1 << 0xF) // Alias for key pressing bits. #define KEY_A (1 << 0) #define KEY_B (1 << 1) #define KEY_SELECT (1 << 2) #define KEY_START (1 << 3) #define KEY_RIGHT (1 << 4) #define KEY_LEFT (1 << 5) #define KEY_UP (1 << 6) #define KEY_DOWN (1 << 7) #define KEY_R (1 << 8) #define KEY_L (1 << 9) #define KEY_MASK 0x03FF // Saving the previous and current key states as globals for now. static u16 key_curr = 0; static u16 key_prev = 0; static inline void poll_keys(void) { key_prev = key_curr; key_curr = ~KEY_INPUTS & KEY_MASK; } // Returns true if the given key has been pressed at time of calling and was not // pressed since the previous call. For example, if a key is being held, this // function will return `true` only on the frame where the key initially // activated. static inline u32 key_tap(u32 key) { return (key_curr & key) & ~(key_prev & key); } // Check if a given key is currently pressed. static inline u32 key_pressed(u32 key) { return (key_curr & key); } // Check if a given key was just released. static inline u32 key_released(u32 key) { return ~(key_curr & key) & (key_prev & key); } // Check if the given key is pressed and has been since at least one frame. static inline u32 key_hold(u32 key) { return key_curr & key_prev & key; } // Check if the given key/button is currently pressed. #define KEY_PRESSED(key) (~(KEY_INPUTS) & key) // Back/unpack bits. static inline u32 unpack_1bb(u8 hex) { const u32 conversion_u32[16] = { 0x00000000, 0x00000001, 0x00000010, 0x00000011, 0x00000100, 0x00000101, 0x00000110, 0x00000111, 0x00001000, 0x00001001, 0x00001010, 0x00001011, 0x00001100, 0x00001101, 0x00001110, 0x00001111, }; u8 low = hex & 0xF; u8 high = (hex >> 4) & 0xF; return (conversion_u32[high] << 16) | conversion_u32[low]; } // Unpack N tiles packed at 1bpp. static inline void unpack_tiles(u32 *src, u32 *dst, size_t n_tiles) { u32 *target_src = src + n_tiles * 2; while (src != target_src) { *dst++ = unpack_1bb((*src >> 24) & 0xFF); *dst++ = unpack_1bb((*src >> 16) & 0xFF); *dst++ = unpack_1bb((*src >> 8) & 0xFF); *dst++ = unpack_1bb(*src & 0xFF); src++; } } // // Direct Memory Access (DMA) // // Source, destination, and control registers. #define DMA_SRC(N) *((vu32*) 0x040000B0 + (N) * 12) #define DMA_DST(N) *((vu32*) 0x040000B4 + (N) * 12) #define DMA_CTRL(N) *((vu32*) 0x040000B8 + (N) * 12) // DMA control bits. #define DMA_DST_INC (0 << 0x15) #define DMA_DST_DEC (1 << 0x15) #define DMA_DST_FIXED (2 << 0x15) #define DMA_DST_RELOAD (3 << 0x15) #define DMA_SRC_INC (0 << 0x17) #define DMA_SRC_DEC (1 << 0x17) #define DMA_SRC_FIXED (2 << 0x17) #define DMA_REPEAT (1 << 0x19) #define DMA_CHUNK_16 (0 << 0x1A) #define DMA_CHUNK_32 (1 << 0x1A) #define DMA_NOW (0 << 0x1C) #define DMA_VBLANK (1 << 0x1C) #define DMA_HBLANK (2 << 0x1C) #define DMA_REFRESH (3 << 0x1C) #define DMA_IRQ (1 << 0x1E) #define DMA_ENABLE (1 << 0x1F) // Custom struct for cleaner DMA transfer functions. typedef struct DmaStr { const void *src; void *dst; u32 ctrl; } DmaStr; #define DMA_TRANSFER ((volatile DmaStr*) 0x040000B0) // Transfer `count` number of chunks from src to dst using a DMA channel. Note // that chunks are not bytes, but instead configured based on bits set by // DMA_CTRL. inline void dma_transfer_copy(void *dst, const void *src, u32 count, int channel, u32 options) { DMA_TRANSFER[channel].ctrl = 0; DMA_TRANSFER[channel].src = src; DMA_TRANSFER[channel].dst = dst; DMA_TRANSFER[channel].ctrl = count | options; } inline void dma_transfer_fill(void *dst, volatile u32 src, u32 count, int channel, u32 options) { DMA_TRANSFER[channel].ctrl = 0; DMA_TRANSFER[channel].src = (const void *)&src; DMA_TRANSFER[channel].dst = dst; DMA_TRANSFER[channel].ctrl = count | options | DMA_SRC_FIXED; } // Copy N number of bytes using a DMA channel. inline void dma_copy(void *dst, const void *src, u32 size, int channel) { dma_transfer_copy(dst, src, size / 4, channel, DMA_CHUNK_32 | DMA_ENABLE); } // Fill the dst location with the word set at src. inline void dma_fill(void *dst, vu32 src, u32 size, int channel) { dma_transfer_fill(dst, src, size / 4, channel, DMA_CHUNK_32 | DMA_ENABLE); } // // Interrupts. // #define IRQ_ENABLE *((vu16*) 0x04000200) #define IRQ_ACK *((vu16*) 0x04000202) #define IRQ_CTRL *((vu16*) 0x04000208) #define IRQ_ACK_BIOS *((vu16*) 0x03007FF8) typedef enum { IRQ_VBLANK, IRQ_HBLANK, IRQ_VCOUNT, IRQ_TIMER_0, IRQ_TIMER_1, IRQ_TIMER_2, IRQ_TIMER_3, IRQ_SERIAL, IRQ_DMA_0, IRQ_DMA_1, IRQ_DMA_2, IRQ_DMA_3, IRQ_KEYPAD, IRQ_GAMEPAK, } IrqIndex; typedef void (*IrsFunc)(void); IrsFunc irs_table[] = { [IRQ_VBLANK ] = NULL, [IRQ_HBLANK ] = NULL, [IRQ_VCOUNT ] = NULL, [IRQ_TIMER_0] = NULL, [IRQ_TIMER_1] = NULL, [IRQ_TIMER_2] = NULL, [IRQ_TIMER_3] = NULL, [IRQ_SERIAL ] = NULL, [IRQ_DMA_0 ] = NULL, [IRQ_DMA_1 ] = NULL, [IRQ_DMA_2 ] = NULL, [IRQ_DMA_3 ] = NULL, [IRQ_KEYPAD ] = NULL, [IRQ_GAMEPAK] = NULL, }; void irq_enable(IrqIndex idx) { switch (idx) { case IRQ_VBLANK: { DISP_STATUS |= DISP_VBLANK_IRQ; } break; case IRQ_HBLANK: { DISP_STATUS |= DISP_HBLANK_IRQ; } break; case IRQ_VCOUNT: { DISP_STATUS |= DISP_VCOUNT_IRQ; } break; case IRQ_TIMER_0: { TIMER_CTRL_0 |= TIMER_CTRL_IRQ; } break; case IRQ_TIMER_1: { TIMER_CTRL_1 |= TIMER_CTRL_IRQ; } break; case IRQ_TIMER_2: { TIMER_CTRL_2 |= TIMER_CTRL_IRQ; } break; case IRQ_TIMER_3: { TIMER_CTRL_3 |= TIMER_CTRL_IRQ; } break; case IRQ_SERIAL: { /* TODO: Set REG_SERIAL? */ } break; case IRQ_DMA_0: { DMA_CTRL(0) |= DMA_IRQ; } break; case IRQ_DMA_1: { DMA_CTRL(1) |= DMA_IRQ; } break; case IRQ_DMA_2: { DMA_CTRL(2) |= DMA_IRQ; } break; case IRQ_DMA_3: { DMA_CTRL(3) |= DMA_IRQ; } break; case IRQ_KEYPAD: { KEY_CTRL |= KEY_IRQ; } break; case IRQ_GAMEPAK: { /* Nothing to do here...*/ } break; } IRQ_ENABLE |= (1 << idx); } void irq_disable(IrqIndex idx) { switch (idx) { case IRQ_VBLANK: { DISP_STATUS &= ~DISP_VBLANK_IRQ; } break; case IRQ_HBLANK: { DISP_STATUS &= ~DISP_HBLANK_IRQ; } break; case IRQ_VCOUNT: { DISP_STATUS &= ~DISP_VCOUNT_IRQ; } break; case IRQ_TIMER_0: { TIMER_CTRL_0 &= ~TIMER_CTRL_IRQ; } break; case IRQ_TIMER_1: { TIMER_CTRL_1 &= ~TIMER_CTRL_IRQ; } break; case IRQ_TIMER_2: { TIMER_CTRL_2 &= ~TIMER_CTRL_IRQ; } break; case IRQ_TIMER_3: { TIMER_CTRL_3 &= ~TIMER_CTRL_IRQ; } break; case IRQ_SERIAL: { /* TODO: Set REG_SERIAL? */ } break; case IRQ_DMA_0: { DMA_CTRL(0) &= ~DMA_IRQ; } break; case IRQ_DMA_1: { DMA_CTRL(1) &= ~DMA_IRQ; } break; case IRQ_DMA_2: { DMA_CTRL(2) &= ~DMA_IRQ; } break; case IRQ_DMA_3: { DMA_CTRL(3) &= ~DMA_IRQ; } break; case IRQ_KEYPAD: { KEY_CTRL &= ~KEY_IRQ; } break; case IRQ_GAMEPAK: { /* Nothing to do here...*/ } break; } IRQ_ENABLE &= ~(1 << idx); } void irs_set(IrqIndex idx, IrsFunc func) { // Store IRQ_CTRL status and disable interrupts for now. u16 irq_ctrl = IRQ_CTRL; IRQ_CTRL = 0; // Update the IRS table and enable/disable the given IRQ. irs_table[idx] = func; if (func == NULL) { irq_disable(idx); } else { irq_enable(idx); } // Restore previous irq_ctrl. IRQ_CTRL = irq_ctrl; } // External irs_main function, has to be written in ARM assembly. void irs_main(void); // Initialize the function pointer for the main IRS routine written in ARM // assembly and enable interrupts. #define IRS_MAIN *(IrsFunc*)(0x03007FFC) void irq_init() { IRS_MAIN = irs_main; IRQ_CTRL = 1; } // Stub function pointer needed for when we want to enable interrupts that don't // require a custom function, such as for the BIOS VSync. void irs_stub() {} // // BIOS function declarations. // // These functions declarations can be used to call the BIOS functions from the // asm code. int bios_vblank_wait(); int bios_div(int num, int denom); // // Sound. // // Sound registers. #define SOUND_SQUARE1_SWEEP *((vu16*)(MEM_IO + 0x60)) #define SOUND_SQUARE1_CTRL *((vu16*)(MEM_IO + 0x62)) #define SOUND_SQUARE1_FREQ *((vu16*)(MEM_IO + 0x64)) #define SOUND_SQUARE2_CTRL *((vu16*)(MEM_IO + 0x68)) #define SOUND_SQUARE2_FREQ *((vu16*)(MEM_IO + 0x6C)) #define SOUND_WAVE_MODE *((vu16*)(MEM_IO + 0x70)) #define SOUND_WAVE_CTRL *((vu16*)(MEM_IO + 0x72)) #define SOUND_WAVE_FREQ *((vu16*)(MEM_IO + 0x74)) #define SOUND_NOISE_CTRL *((vu16*)(MEM_IO + 0x78)) #define SOUND_NOISE_FREQ *((vu16*)(MEM_IO + 0x7C)) #define SOUND_DMG_MASTER *((vu16*)(MEM_IO + 0x80)) #define SOUND_DSOUND_MASTER *((vu16*)(MEM_IO + 0x82)) #define SOUND_STATUS *((vu16*)(MEM_IO + 0x84)) #define SOUND_BIAS *((vu16*)(MEM_IO + 0x88)) // Sound DMG master bits. #define SOUND_VOLUME_LEFT(N) (N) #define SOUND_VOLUME_RIGHT(N) ((N) << 4) #define SOUND_ENABLE_SQUARE1_LEFT (1 << 0x8) #define SOUND_ENABLE_SQUARE2_LEFT (1 << 0x9) #define SOUND_ENABLE_WAVE_LEFT (1 << 0xA) #define SOUND_ENABLE_NOISE_LEFT (1 << 0xB) #define SOUND_ENABLE_SQUARE1_RIGHT (1 << 0xC) #define SOUND_ENABLE_SQUARE2_RIGHT (1 << 0xD) #define SOUND_ENABLE_WAVE_RIGHT (1 << 0xE) #define SOUND_ENABLE_NOISE_RIGHT (1 << 0xF) typedef enum { SOUND_DSOUND = (0x0 << 0), SOUND_SQUARE1 = (0x1 << 0), SOUND_SQUARE2 = (0x1 << 1), SOUND_WAVE = (0x1 << 2), SOUND_NOISE = (0x1 << 3), } SoundChannel; u16 sound_volume(SoundChannel channels, u8 volume) { volume = volume & 0x7; channels = channels & 0xF; return volume | (volume << 0x4) | (channels << 0x8) | (channels << 0xC); } // Sound Direct Sound master bits. #define SOUND_DMG25 0x0 #define SOUND_DMG50 0x1 #define SOUND_DMG100 0x2 #define SOUND_DSOUND_RATIO_A (1 << 0x2) #define SOUND_DSOUND_RATIO_B (1 << 0x3) #define SOUND_DSOUND_LEFT_A (1 << 0x8) #define SOUND_DSOUND_RIGHT_A (1 << 0x9) #define SOUND_DSOUND_TIMER_A (1 << 0xA) #define SOUND_DSOUND_RESET_A (1 << 0xB) #define SOUND_DSOUND_LEFT_B (1 << 0xC) #define SOUND_DSOUND_RIGHT_B (1 << 0xD) #define SOUND_DSOUND_TIMER_B (1 << 0xE) #define SOUND_DSOUND_RESET_B (1 << 0xF) // Direct sound FIFO queues. #define SOUND_FIFO_A ((u16*)(MEM_IO + 0xA0)) #define SOUND_FIFO_B ((u16*)(MEM_IO + 0xA4)) // Sound status bits. #define SOUND_ENABLE (1 << 0x7) // DMG square control bits. #define SOUND_SQUARE_LEN(N) (N) #define SOUND_SQUARE_DUTY(N) ((N) << 0x6) #define SOUND_SQUARE_ENV_TIME(N) ((N) << 0x8) #define SOUND_SQUARE_ENV_DIR(N) ((N) << 0xB) #define SOUND_SQUARE_ENV_VOL(N) ((N) << 0xC) // DMG square 1 sweep control bits. #define SOUND_SWEEP_NUMBER(N) (N) #define SOUND_SWEEP_DIR(N) ((N) << 0x3) #define SOUND_SWEEP_TIME(N) ((N) << 0x4) // DMG frequency bits (Square/Wave). #define SOUND_FREQ_TIMED (1 << 0xE) #define SOUND_FREQ_RESET (1 << 0xF) // DMG wave ram. #define SOUND_WAVE_RAM_0 *((vu32*)(MEM_IO + 0x90)) #define SOUND_WAVE_RAM_1 *((vu32*)(MEM_IO + 0x94)) #define SOUND_WAVE_RAM_2 *((vu32*)(MEM_IO + 0x98)) #define SOUND_WAVE_RAM_3 *((vu32*)(MEM_IO + 0x9C)) // DMG wave control bits. #define SOUND_WAVE_LENGTH(N) (N) #define SOUND_WAVE_MUTE 0x0 #define SOUND_WAVE_VOL_100 (0x1 << 0xD) #define SOUND_WAVE_VOL_75 (0x4 << 0xD) #define SOUND_WAVE_VOL_50 (0x2 << 0xD) #define SOUND_WAVE_VOL_25 (0x3 << 0xD) // DMG wave mode bits. #define SOUND_WAVE_BANK_MODE(N) ((N) << 0x5) #define SOUND_WAVE_BANK_SELECT(N) ((N) << 0x6) #define SOUND_WAVE_ENABLE (1 << 0x7) typedef u8 WaveBank[32]; #define SOUND_WAVE_RAM ((WaveBank*)(MEM_IO + 0x90)) typedef enum { NOTE_C_2 , NOTE_C_SHARP_2 , NOTE_D_2 , NOTE_D_SHARP_2 , NOTE_E_2 , NOTE_F_2 , NOTE_F_SHARP_2 , NOTE_G_2 , NOTE_G_SHARP_2 , NOTE_A_2 , NOTE_A_SHARP_2 , NOTE_B_2 , NOTE_C_3 , NOTE_C_SHARP_3 , NOTE_D_3 , NOTE_D_SHARP_3 , NOTE_E_3 , NOTE_F_3 , NOTE_F_SHARP_3 , NOTE_G_3 , NOTE_G_SHARP_3 , NOTE_A_3 , NOTE_A_SHARP_3 , NOTE_B_3 , NOTE_C_4 , NOTE_C_SHARP_4 , NOTE_D_4 , NOTE_D_SHARP_4 , NOTE_E_4 , NOTE_F_4 , NOTE_F_SHARP_4 , NOTE_G_4 , NOTE_G_SHARP_4 , NOTE_A_4 , NOTE_A_SHARP_4 , NOTE_B_4 , NOTE_C_5 , NOTE_C_SHARP_5 , NOTE_D_5 , NOTE_D_SHARP_5 , NOTE_E_5 , NOTE_F_5 , NOTE_F_SHARP_5 , NOTE_G_5 , NOTE_G_SHARP_5 , NOTE_A_5 , NOTE_A_SHARP_5 , NOTE_B_5 , NOTE_C_6 , NOTE_C_SHARP_6 , NOTE_D_6 , NOTE_D_SHARP_6 , NOTE_E_6 , NOTE_F_6 , NOTE_F_SHARP_6 , NOTE_G_6 , NOTE_G_SHARP_6 , NOTE_A_6 , NOTE_A_SHARP_6 , NOTE_B_6 , NOTE_C_7 , NOTE_C_SHARP_7 , NOTE_D_7 , NOTE_D_SHARP_7 , NOTE_E_7 , NOTE_F_7 , NOTE_F_SHARP_7 , NOTE_G_7 , NOTE_G_SHARP_7 , NOTE_A_7 , NOTE_A_SHARP_7 , NOTE_B_7 , NOTE_C_8 } Note; static const u32 sound_rates[] = { 44 , 156 , 262 , 363 , 457 , 547 , 631 , 710 , 785 , 856 , 923 , 986 , 1046, 1102, 1155, 1205, 1252, 1297, 1339, 1379, 1416, 1452, 1485, 1517, 1547, 1575, 1601, 1626, 1650, 1672, 1693, 1713, 1732, 1750, 1766, 1782, 1797, 1811, 1824, 1837, 1849, 1860, 1870, 1880, 1890, 1899, 1907, 1915, 1922, 1929, 1936, 1942, 1948, 1954, 1959, 1964, 1969, 1973, 1977, 1981, 1985, 1988, 1992, 1995, 1998, 2001, 2003, 2006, 2008, 2010, 2012, 2014, 2016, }; // // System control. // // Used to configure gamepak access timings. #define SYSTEM_WAIT *((vu16*)(MEM_IO + 0x0204)) // This register defaults to 0, but manufacture cartridges use the values // provided below. #define SYSTEM_WAIT_DEFAULT 0 #define SYSTEM_WAIT_CARTRIDGE 0x4317 // // Misc. // // Custom VSync option. This will waste a lot of battery power, since the // machine is not clocked down. Prefer using `bios_vblank_wait()` if interrupts // are enabled. static inline void wait_vsync(void) { while(DISP_VCOUNT >= 160); while(DISP_VCOUNT < 160); } // General utility macros. #define MIN(A, B) ((A) <= (B) ? (A) : (B)) #define MAX(A, B) ((A) >= (B) ? (A) : (B)) #define CLAMP(X, MIN, MAX) ((X) <= (MIN) ? (MIN) : (X) > (MAX) ? (MAX): (X)) #define LEN(ARR) (sizeof(ARR) / sizeof((ARR)[0])) // Fixed-point arithmetic for (i.P) numbers. #define FP_MUL(A,B,P) (((A) * (B)) >> (P)) #define FP_DIV(A,B,P) (((A) << (P)) / (B)) #define FP_LERP(Y0,Y1,X,P) ((Y0) + FP_MUL((X), ((Y1) - (Y0)), P)) // // Memory section macros for devkitARM. // #define IWRAM_DATA __attribute__((section(".iwram"))) #define IWRAM_CODE __attribute__((section(".iwram"), long_call, target("arm"))) #define EWRAM_DATA __attribute__((section(".ewram"))) #define EWRAM_CODE __attribute__((section(".ewram"), long_call)) #define EWRAM_BSS __attribute__((section(".sbss"))) #endif // GBAEXP_COMMON_H