#include "shorthand.h" #include "bd-font.c" #include "gba-buttons.c" // // Memory sections. // // Defines for the different memory sections in the GBA. #define MEM_SROM 0x00000000 #define MEM_EW 0x02000000 #define MEM_IW 0x03000000 #define MEM_IO 0x04000000 #define MEM_PAL 0x05000000 #define MEM_VRAM 0x06000000 #define MEM_OAM 0x07000000 #define MEM_PAK 0x08000000 #define MEM_CART 0x0E000000 // // Display modes. // // Display registers. #define DISP_CTRL *((vu32*)(MEM_IO + 0x0000)) #define DISP_STATUS *((vu32*)(MEM_IO + 0x0004)) #define DISP_VCOUNT *((vu32*)(MEM_IO + 0x0006)) // The first three bits in the DISP_CTRL are used to control the video mode. #define DISP_MODE_0 0x0000 #define DISP_MODE_1 0x0001 #define DISP_MODE_2 0x0002 #define DISP_MODE_3 0x0003 #define DISP_MODE_4 0x0004 #define DISP_MODE_5 0x0005 #define DISP_GB (1 << 3) #define DISP_PAGE (1 << 4) #define DISP_OAM_HBLANK (1 << 5) #define DISP_OBJ_1D (1 << 6) #define DISP_BLANK (1 << 7) #define DISP_BG_0 (1 << 8) #define DISP_BG_1 (1 << 9) #define DISP_BG_2 (1 << 10) #define DISP_BG_3 (1 << 11) #define DISP_OBJ (1 << 12) #define DISP_ENABLE_SPRITES DISP_OBJ | DISP_OBJ_1D // Registers to control of BG layers. #define BG_CTRL_0 *((vu16*)(0x04000008 + 0x0000)) #define BG_CTRL_1 *((vu16*)(0x04000008 + 0x0002)) #define BG_CTRL_2 *((vu16*)(0x04000008 + 0x0004)) #define BG_CTRL_3 *((vu16*)(0x04000008 + 0x0006)) // Screen settings. #define SCREEN_WIDTH 240 #define SCREEN_HEIGHT 160 // The GBA in mode 3 expects rbg15 colors in the VRAM, where each component // (RGB) have a 0--31 range. For example, pure red would be rgb15(31, 0, 0). typedef u16 Color; // // Tile memory access. // // NOTE: Only defining 4bpp tiles for now. typedef struct Tile { u32 data[8]; } Tile; typedef Tile TileBlock[512]; #define TILE_MEM ((TileBlock*) MEM_VRAM) // We can treat the screen as a HxW matrix. With the following macro we can // write a pixel to the screen at the (x, y) position using: // // FRAMEBUFFER[y][x] = color; // typedef Color Scanline[SCREEN_WIDTH]; #define FRAMEBUFFER ((Scanline*)MEM_VRAM) #define SCREEN_BUFFER ((vu16*) MEM_VRAM) #define PAL_BUFFER_BG ((vu16*) MEM_PAL) #define PAL_BUFFER_SPRITES ((vu16*) 0x05000200) // // Colors. // static inline Color rgb15(u32 red, u32 green, u32 blue ) { return (blue << 10) | (green << 5) | red; } #define COLOR_RED rgb15(31, 0, 12) #define COLOR_BLUE rgb15(2, 15, 30) #define COLOR_CYAN rgb15(0, 30, 30) #define COLOR_GREY rgb15(4, 4, 4) #define COLOR_BLACK rgb15(0, 0, 0) #define COLOR_WHITE rgb15(28, 28, 28) // // Sprites. // // Using macros instead of aligned structs for setting up OBJ attributes and // affine parameters. // TODO: Benchmark if this would be slower or the same that TONC's // implementation. #define OBJ_ATTR_0(N) *((vu16*)(MEM_OAM + 0 + 8 * (N))) #define OBJ_ATTR_1(N) *((vu16*)(MEM_OAM + 2 + 8 * (N))) #define OBJ_ATTR_2(N) *((vu16*)(MEM_OAM + 4 + 8 * (N))) #define OBJ_AFFINE_PA(N) *((vs16*)(MEM_OAM + 6 + 8 * 0 + 8 * 4 * (N))) #define OBJ_AFFINE_PB(N) *((vs16*)(MEM_OAM + 6 + 8 * 1 + 8 * 4 * (N))) #define OBJ_AFFINE_PC(N) *((vs16*)(MEM_OAM + 6 + 8 * 2 + 8 * 4 * (N))) #define OBJ_AFFINE_PD(N) *((vs16*)(MEM_OAM + 6 + 8 * 3 + 8 * 4 * (N))) // Using bd-font, an 8x8 bitmap font. static void put_char(int x, int y, Color clr, u8 chr) { for (size_t i = 0; i < 8; ++i) { for (size_t j = 0; j < 8; ++j) { if ((font[chr][i] >> (7 - j)) & 0x1) { FRAMEBUFFER[y + i][x + j] = clr; } } } } static void put_text(int x, int y, Color clr, char *msg) { int count = 0; while (*msg) { put_char(x + count, y, clr, *msg++); count += 8; } } // Draws a line with the given color between (x0,y0) and (x1,y1) using the // Bresenham's line drawing algorithm using exclusively integer arithmetic. static void draw_line(int x0, int y0, int x1, int y1, Color clr) { // Pointer to the initial position of the screen buffer where we will start // writing our data. vu16 *destination = (u16*)(SCREEN_BUFFER + y0 * SCREEN_WIDTH + x0); // Adjust the step direction and calculate deltas. int x_step; int y_step; int dx; int dy; if (x0 > x1) { x_step = -1; dx = x0 - x1; } else { x_step = 1; dx = x1 - x0; } if (y0 > y1) { y_step = -SCREEN_WIDTH; dy = y0 - y1; } else { y_step = +SCREEN_WIDTH; dy = y1 - y0; } if(dy == 0) { // Horizontal line. for(int i = 0; i <= dx; i++) { destination[i * x_step] = clr; } } else if(dx == 0) { // Vertical line. for(int i = 0; i <= dy; i++) { destination[i * y_step] = clr; } } else if (dx >= dy){ // Positive slope. int diff = 2 * dy - dx; for (int i = 0; i <= dx; ++i) { *destination = clr; if (diff >= 0) { destination += y_step; diff -= 2 * dx; } destination += x_step; diff += 2 * dy; } } else { // Negative slope. int diff = 2 * dx - dy; for (int i = 0; i <= dy; ++i) { *destination = clr; if (diff >= 0) { destination += x_step; diff -= 2 * dy; } destination += y_step; diff += 2 * dx; } } } static inline void draw_rect(int x0, int y0, int x1, int y1, Color clr) { if (x0 > x1) { int tmp = x0; x0 = x1; x1 = tmp; } if (y0 > y1) { int tmp = y0; y0 = y1; y1 = tmp; } int dx = x1 - x0; int dy = y1 - y0; for (int i = 0; i <= dx; ++i) { int x = x0 + i; FRAMEBUFFER[y0][x] = clr; FRAMEBUFFER[y1][x] = clr; } for (int j = 0; j <= dy; ++j) { int y = y0 + j; FRAMEBUFFER[y][x0] = clr; FRAMEBUFFER[y][x1] = clr; } } static inline void draw_fill_rect(int x0, int y0, int x1, int y1, Color clr) { if (x0 > x1) { int tmp = x0; x0 = x1; x1 = tmp; } if (y0 > y1) { int tmp = y0; y0 = y1; y1 = tmp; } int dx = x1 - x0; int dy = y1 - y0; for (int i = 0; i <= dx; ++i) { for (int j = 0; j <= dy; ++j) { int x = x0 + i; int y = y0 + j; FRAMEBUFFER[y][x] = clr; } } } static inline void wait_vsync(void) { while(DISP_VCOUNT >= 160); while(DISP_VCOUNT < 160); } // // Main functions. // // In Mode4 the buffer is of 8 bytes per pixel instead of 16. We can't write the // color directly, instead the color is stored in the palette memory at // `MEM_PAL`. Note that in this mode MEM_PAL[0] is the background color. This // plotter takes an index to a color stored in MEM_PAL[col_index]. Because the // GBA needs to meet memory alignment requirements, we can't write a u8 into // memory, instead we need to read a u16 word, mask and or the corresponding // bits and wave the updated u16. static void put_pixel_m4(int x, int y, u8 col_index, vu16 *buffer) { int buffer_index = (y * SCREEN_WIDTH + x) / 2; vu16 *destination = &buffer[buffer_index]; // Odd pixels will go to the top 8 bits of the destination. Even pixels to // the lower 8 bits. int odd = x & 0x1; if(odd) { *destination= (*destination & 0xFF) | (col_index << 8); } else { *destination= (*destination & ~0xFF) | col_index; } } static void draw_fill_rect_m4(int x0, int y0, int x1, int y1, u8 col_index, vu16 *buffer) { int ix, iy; for(iy = y0; iy < y1; iy++) { for(ix = x0; ix < x1; ix++) { put_pixel_m4(ix, iy, col_index, buffer); } } } static inline void flip_page(void) { DISP_CTRL ^= DISP_PAGE; } #define SCREEN_PAGE_1 ((vu16*) MEM_VRAM) #define SCREEN_PAGE_2 ((vu16*) (MEM_VRAM + 0xa000)) // // Profiling. // #define TIMER_DATA_0 *((vu16*) (0x04000100 + 0x04 * 0)) #define TIMER_DATA_1 *((vu16*) (0x04000100 + 0x04 * 1)) #define TIMER_DATA_2 *((vu16*) (0x04000100 + 0x04 * 2)) #define TIMER_DATA_3 *((vu16*) (0x04000100 + 0x04 * 3)) #define TIMER_CTRL_0 *((vu16*) (0x04000102 + 0x04 * 0)) #define TIMER_CTRL_1 *((vu16*) (0x04000102 + 0x04 * 1)) #define TIMER_CTRL_2 *((vu16*) (0x04000102 + 0x04 * 2)) #define TIMER_CTRL_3 *((vu16*) (0x04000102 + 0x04 * 3)) // Timer control bits. #define TIMER_CTRL_FREQ_0 0 #define TIMER_CTRL_FREQ_1 1 #define TIMER_CTRL_FREQ_2 2 #define TIMER_CTRL_FREQ_3 3 #define TIMER_CTRL_CASCADE (1 << 2) #define TIMER_CTRL_IRQ (1 << 6) #define TIMER_CTRL_ENABLE (1 << 7) // We use timers 2 and 3 to count the number of cycles since the profile_start // functions is called. Don't use if the code we are trying to profile make use // of these timers. static inline void profile_start(void) { TIMER_DATA_2 = 0; TIMER_DATA_3 = 0; TIMER_CTRL_2 = 0; TIMER_CTRL_3 = 0; TIMER_CTRL_3 = TIMER_CTRL_ENABLE | TIMER_CTRL_CASCADE; TIMER_CTRL_2 = TIMER_CTRL_ENABLE; } static inline u32 profile_stop(void) { TIMER_CTRL_2 = 0; return (TIMER_DATA_3 << 16) | TIMER_DATA_2; } // // Input handling. // // Memory address for key input register #define KEY_INPUTS *((vu16*) 0x04000130) // Alias for key pressing bits. #define KEY_A (1 << 0) #define KEY_B (1 << 1) #define KEY_SELECT (1 << 2) #define KEY_START (1 << 3) #define KEY_RIGHT (1 << 4) #define KEY_LEFT (1 << 5) #define KEY_UP (1 << 6) #define KEY_DOWN (1 << 7) #define KEY_R (1 << 8) #define KEY_L (1 << 9) #define KEY_MASK 0x03FF // Saving the previous and current key states as globals for now. static u16 key_curr = 0; static u16 key_prev = 0; static inline void poll_keys(void) { key_prev = key_curr; key_curr = ~KEY_INPUTS & KEY_MASK; } // Returns true if the given key has been pressed at time of calling and was not // pressed since the previous call. For example, if a key is being held, this // function will return `true` only on the frame where the key initially // activated. static inline u32 key_pressed(u32 key) { return (key_curr & key) & ~(key_prev & key); } // Check if the given key is pressed and has been since at least one frame. static inline u32 key_hold(u32 key) { return (key_curr & key) & key_prev & key; } // Check if the given key/button is currently pressed. #define KEY_PRESSED(key) (~(KEY_INPUTS) & key) void draw_logo(void) { int side = 60; int line = 35; int height = side * 0.5; int x = SCREEN_WIDTH / 2 - height / 2; int y = SCREEN_HEIGHT / 2; // Draw red triangle. draw_line(x + height - 1, y - side / 2, x, y - 1, COLOR_RED); draw_line(x + height - 1, y + side / 2, x, y + 1, COLOR_RED); draw_line(x + height - 1, y - side / 2 + 1, x, y, COLOR_RED); draw_line(x + height - 1, y + side / 2 - 1, x, y, COLOR_RED); // Draw white triangle. draw_line(x, y - side / 2, x, y + side / 2, COLOR_WHITE); draw_line(x + 1, y - side / 2, x + height, y - 1, COLOR_WHITE); draw_line(x + 1, y + side / 2, x + height, y + 1, COLOR_WHITE); // Draw white line at triangle tip. draw_line(x + height, y - side / 2, x + height, y + side / 2, COLOR_WHITE); draw_line(x + height + 1, y - side / 2, x + height + 1, y + side / 2, COLOR_WHITE); // Double triangle line. draw_line(x - 1, y - side / 2, x - 1, y + side / 2, COLOR_WHITE); draw_line(x + 1, y - side / 2 + 1, x + height, y, COLOR_WHITE); draw_line(x + 1, y + side / 2 - 1, x + height, y, COLOR_WHITE); // Draw white lines. draw_line(x - line, y, x, y, COLOR_WHITE); draw_line(x + height, y, x + height + line, y, COLOR_WHITE); draw_line(x - line, y + 1, x, y + 1, COLOR_WHITE); draw_line(x + height, y + 1, x + height + line, y + 1, COLOR_WHITE); } void copy_font_to_tile_memory(Tile *tile) { // Hex to bits translation table. const u32 conversion_u32[16] = { 0x00000000, 0x00001000, 0x00000100, 0x00001100, 0x00000010, 0x00001010, 0x00000110, 0x00001110, 0x00000001, 0x00001001, 0x00000101, 0x00001101, 0x00000011, 0x00001011, 0x00000111, 0x00001111, }; for (size_t i = 0; i < 250; ++i) { for (size_t j = 0; j < 8; ++j) { u8 row = font[i][j]; u32 tile_idx = 0x00000000; tile_idx = conversion_u32[row & 0xF] << 16; tile_idx |= conversion_u32[(row >> 4) & 0xF]; (tile + i)->data[j] = tile_idx; } } } typedef struct Sprite { // A unique sprite identifier. size_t id; // The number of tiles for a single sprite frame. size_t n_tiles; // The starting tile of this sprite. size_t tile_start; // The associated palette bank for this sprite. size_t pal_bank; } Sprite; typedef struct ButtonSprite { int id; int x; int y; int frame; BtnState state; } ButtonSprite; #define NUM_SPRITES 128 Sprite sprites[NUM_SPRITES]; // Keeping track of unique sprites and current sprite memory pointer using // global singletons. size_t sprite_counter = 0; size_t sprite_tile_counter = 0; u32 *sprite_memory = NULL; // Loads the sprite data into video memory and initialize the Sprite structure. size_t load_sprite_data(u32 *sprite_data, size_t n_tiles, size_t n_frames) { memcpy(sprite_memory, sprite_data, 8 * n_tiles * n_frames * sizeof(u32)); sprite_memory += 8 * n_tiles * n_frames; Sprite sprite = { .id = sprite_counter, .n_tiles = n_tiles, .tile_start = sprite_tile_counter, }; sprite_tile_counter += n_tiles * n_frames; sprites[sprite_counter] = sprite; return sprite_counter++; } int main(void) { // Configure the display in mode 0 to show OBJs, where tile memory is // sequential. DISP_CTRL = DISP_MODE_3 | DISP_ENABLE_SPRITES | DISP_BG_2; // Add colors to the sprite color palette. Tiles with color number 0 are // treated as transparent. for (size_t i = 0; i < 16; ++i) { PAL_BUFFER_SPRITES[i] = COLOR_WHITE; } // Initialize all attributes by disabling rendering. If we don't do this, // glitches may appear. for (size_t i = 0; i < 128; ++i) { OBJ_ATTR_0(i) = (1 << 9); } sprite_tile_counter = 512; sprite_memory = &TILE_MEM[4][sprite_tile_counter]; // Initialize the A/B button sprites. int buttons_x = SCREEN_WIDTH - 64 - 10; int buttons_y = 120; ButtonSprite btn_b = { .id = load_sprite_data(&gba_btn_b_data, 16, 7), .x = buttons_x, .y = buttons_y, .frame = 0, .state = BTN_STATE_IDLE, }; OBJ_ATTR_0(btn_b.id) = btn_b.y; OBJ_ATTR_1(btn_b.id) = btn_b.x | (1 << 0xF); OBJ_ATTR_2(btn_b.id) = sprites[btn_b.id].tile_start; ButtonSprite btn_a = { .id = load_sprite_data(&gba_btn_a_data, 16, 7), .x = buttons_x + 20, .y = buttons_y - 16, .frame = 0, .state = BTN_STATE_IDLE, }; OBJ_ATTR_0(btn_a.id) = btn_a.y; OBJ_ATTR_1(btn_a.id) = btn_a.x | (1 << 0xF); OBJ_ATTR_2(btn_a.id) = sprites[btn_a.id].tile_start; draw_logo(); int frame_counter = 0; while(true) { wait_vsync(); poll_keys(); // Toggle frame counter when we press down. if (key_pressed(KEY_DOWN) || key_hold(KEY_DOWN)) { } if (key_pressed(KEY_UP) || key_hold(KEY_UP)) { } if (key_pressed(KEY_LEFT) || key_hold(KEY_LEFT)) { } if (key_pressed(KEY_RIGHT) || key_hold(KEY_RIGHT)) { } if (key_pressed(KEY_B)) { btn_b.frame = 0; btn_b.state = BTN_STATE_PRESSED; } else if (key_hold(KEY_B)) { size_t n_frames = animation_states[btn_b.state]->n_frames; if (btn_b.frame < n_frames - 1) { btn_b.frame++; } } else { size_t n_frames = animation_states[btn_b.state]->n_frames; // Finish the animation and reset idle state. if (btn_b.frame > 0 && btn_b.frame < n_frames - 1) { btn_b.frame++; } else { btn_b.frame = 0; btn_b.state = BTN_STATE_IDLE; } } if (key_pressed(KEY_A)) { btn_a.frame = 0; btn_a.state = BTN_STATE_PRESSED; } else if (key_hold(KEY_A)) { size_t n_frames = animation_states[btn_a.state]->n_frames; if (btn_a.frame < n_frames - 1) { btn_a.frame++; } } else { size_t n_frames = animation_states[btn_a.state]->n_frames; // Finish the animation and reset idle state. if (btn_a.frame > 0 && btn_a.frame < n_frames - 1) { btn_a.frame++; } else { btn_a.frame = 0; btn_a.state = BTN_STATE_IDLE; } } if (key_pressed(KEY_L)) { } if (key_pressed(KEY_R)) { } OBJ_ATTR_2(btn_b.id) = sprites[btn_b.id].tile_start + animation_states[btn_b.state]->tile_offsets[btn_b.frame]; OBJ_ATTR_2(btn_a.id) = sprites[btn_a.id].tile_start + animation_states[btn_a.state]->tile_offsets[btn_a.frame]; frame_counter++; }; return 0; }