#ifndef GBAEXP_COMMON_H #define GBAEXP_COMMON_H #include "shorthand.h" // // Memory sections. // // Defines for the different memory sections in the GBA. #define MEM_SROM 0x00000000 #define MEM_EW 0x02000000 #define MEM_IW 0x03000000 #define MEM_IO 0x04000000 #define MEM_PAL 0x05000000 #define MEM_VRAM 0x06000000 #define MEM_OAM 0x07000000 #define MEM_PAK 0x08000000 #define MEM_CART 0x0E000000 // // Display modes. // // Display registers. #define DISP_CTRL *((vu32*)(MEM_IO + 0x0000)) #define DISP_STATUS *((vu16*)(MEM_IO + 0x0004)) #define DISP_VCOUNT *((vu16*)(MEM_IO + 0x0006)) // The first three bits in the DISP_CTRL are used to control the video mode. #define DISP_MODE_0 0x0000 #define DISP_MODE_1 0x0001 #define DISP_MODE_2 0x0002 #define DISP_MODE_3 0x0003 #define DISP_MODE_4 0x0004 #define DISP_MODE_5 0x0005 #define DISP_GB (1 << 3) #define DISP_PAGE (1 << 4) #define DISP_OAM_HBLANK (1 << 5) #define DISP_OBJ_1D (1 << 6) #define DISP_BLANK (1 << 7) #define DISP_BG_0 (1 << 8) #define DISP_BG_1 (1 << 9) #define DISP_BG_2 (1 << 10) #define DISP_BG_3 (1 << 11) #define DISP_OBJ (1 << 12) #define DISP_ENABLE_SPRITES DISP_OBJ | DISP_OBJ_1D // These bits are used to control the DISP_STATUS register. #define DISP_VBLANK_STATUS (1 << 0x0) #define DISP_HBLANK_STATUS (1 << 0x1) #define DISP_VCOUNT_STATUS (1 << 0x2) #define DISP_VBLANK_IRQ (1 << 0x3) #define DISP_HBLANK_IRQ (1 << 0x4) #define DISP_VCOUNT_IRQ (1 << 0x5) #define DISP_VCOUNT_TRIGGER(N) ((N) << 0x8) // Registers to control of BG layers. #define BG_CTRL(N) *((vu16*)(0x04000008 + 0x0002 * (N))) // Bits to control the background. #define BG_PRIORITY(N) ((N) & 0x3) #define BG_CHARBLOCK(N) ((N) << 2) #define BG_MOSAIC (1 << 6) #define BG_HIGH_COLOR (1 << 7) #define BG_SCREENBLOCK(N) ((N) << 8) #define BG_AFFINE (1 << 0xD) #define BG_SIZE(N) ((N) << 0xE) // BG registers for horizontal displacement. #define BG_H_SCROLL_0 *((vu16*)(0x04000010 + 0x0004 * 0)) #define BG_H_SCROLL_1 *((vu16*)(0x04000010 + 0x0004 * 1)) #define BG_H_SCROLL_2 *((vu16*)(0x04000010 + 0x0004 * 2)) #define BG_H_SCROLL_3 *((vu16*)(0x04000010 + 0x0004 * 3)) // BG registers for vertical displacement. #define BG_V_SCROLL_0 *((vu16*)(0x04000012 + 0x0004 * 0)) #define BG_V_SCROLL_1 *((vu16*)(0x04000012 + 0x0004 * 1)) #define BG_V_SCROLL_2 *((vu16*)(0x04000012 + 0x0004 * 2)) #define BG_V_SCROLL_3 *((vu16*)(0x04000012 + 0x0004 * 3)) // Screen settings. #define SCREEN_WIDTH 240 #define SCREEN_HEIGHT 160 // The GBA in mode 3 expects rbg15 colors in the VRAM, where each component // (RGB) have a 0--31 range. For example, pure red would be rgb15(31, 0, 0). typedef u16 Color; // A palette is composed of 16 colors, with color at index 0 being transparent. typedef Color Palette[16]; // // Tile memory access. // // NOTE: Only defining 4bpp tiles for now. typedef struct Tile { u32 data[8]; } Tile; typedef Tile TileBlock[512]; #define TILE_MEM ((TileBlock*) MEM_VRAM) // Screenblocks and charblocks for backgrounds. typedef u16 ScreenBlock[1024]; typedef Tile CharBlock[512]; #define CHARBLOCK_MEM ((CharBlock*)MEM_VRAM) #define SCREENBLOCK_MEM ((ScreenBlock*)MEM_VRAM) // Screenblock entry bits. #define SCREENBLOCK_ENTRY_H_FLIP (1 << 0xA) #define SCREENBLOCK_ENTRY_V_FLIP (1 << 0xB) #define SCREENBLOCK_ENTRY_PAL(N) ((N) << 0xC) size_t se_index(size_t tile_x, size_t tile_y, size_t map_width) { size_t sbb = ((tile_x >> 5) + (tile_y >> 5) * (map_width >> 5)); return sbb * 1024 + ((tile_x & 31) + (tile_y & 31) * 32); } // We can treat the screen as a HxW matrix. With the following macro we can // write a pixel to the screen at the (x, y) position using: // // FRAMEBUFFER[y][x] = color; // typedef Color Scanline[SCREEN_WIDTH]; #define FRAMEBUFFER ((Scanline*)MEM_VRAM) #define SCREEN_BUFFER ((u16*) MEM_VRAM) #define PAL_BUFFER_BG ((u16*) MEM_PAL) #define PAL_BUFFER_SPRITES ((u16*) 0x05000200) #define PAL_BANK_BG ((Palette*) MEM_PAL) #define PAL_BANK_SPRITES ((Palette*) 0x05000200) // // Colors. // static inline Color rgb15(u32 red, u32 green, u32 blue ) { return (blue << 10) | (green << 5) | red; } #define COLOR_RED rgb15(31, 0, 12) #define COLOR_BLUE rgb15(2, 15, 30) #define COLOR_CYAN rgb15(0, 30, 30) #define COLOR_GREY rgb15(4, 4, 4) #define COLOR_BLACK rgb15(0, 0, 0) #define COLOR_WHITE rgb15(28, 28, 28) // // Sprites. // // Using macros instead of aligned structs for setting up OBJ attributes and // affine parameters. // TODO: Benchmark if this would be slower or the same that TONC's // implementation. #define OBJ_ATTR_0(N) *((vu16*)(MEM_OAM + 0 + 8 * (N))) #define OBJ_ATTR_1(N) *((vu16*)(MEM_OAM + 2 + 8 * (N))) #define OBJ_ATTR_2(N) *((vu16*)(MEM_OAM + 4 + 8 * (N))) #define OBJ_AFFINE_PA(N) *((vs16*)(MEM_OAM + 6 + 8 * 0 + 8 * 4 * (N))) #define OBJ_AFFINE_PB(N) *((vs16*)(MEM_OAM + 6 + 8 * 1 + 8 * 4 * (N))) #define OBJ_AFFINE_PC(N) *((vs16*)(MEM_OAM + 6 + 8 * 2 + 8 * 4 * (N))) #define OBJ_AFFINE_PD(N) *((vs16*)(MEM_OAM + 6 + 8 * 3 + 8 * 4 * (N))) // OBJ_ATTR_0 parameters #define OBJ_Y_COORD(N) ((N) & 0xFF) #define OBJ_NORMAL (0x00 << 0x8) #define OBJ_AFFINE (0x01 << 0x8) #define OBJ_HIDDEN (0x02 << 0x8) #define OBJ_AFFINE_2X (0x03 << 0x8) #define OBJ_ALPHA_BLEND (0x01 << 0xA) #define OBJ_WINDOW (0x02 << 0xA) #define OBJ_SHAPE_SQUARE (0x00 << 0xE) #define OBJ_SHAPE_WIDE (0x01 << 0xE) #define OBJ_SHAPE_TALL (0x02 << 0xE) // OBJ_ATTR_1 parameters #define OBJ_X_COORD(N) ((N) & 0x1FF) #define OBJ_AFFINE_IDX(N) ((N) << 0x9) #define OBJ_H_FLIP (0x01 << 0xC) #define OBJ_V_FLIP (0x01 << 0xD) #define OBJ_SIZE_SMALL (0x00 << 0xE) #define OBJ_SIZE_MID (0x01 << 0xE) #define OBJ_SIZE_BIG (0x02 << 0xE) #define OBJ_SIZE_HUGE (0x03 << 0xE) // OBJ_ATTR_2 parameters #define OBJ_TILE_INDEX(N) ((N) & 0x3FF) #define OBJ_PRIORITY(N) ((N) << 0xA) #define OBJ_PAL_BANK(N) ((N) << 0xC) static inline void wait_vsync(void) { while(DISP_VCOUNT >= 160); while(DISP_VCOUNT < 160); } // // Mode 4 page flipping // static inline void flip_page(void) { DISP_CTRL ^= DISP_PAGE; } #define SCREEN_PAGE_1 ((vu16*) MEM_VRAM) #define SCREEN_PAGE_2 ((vu16*) (MEM_VRAM + 0xa000)) // // Profiling. // #define TIMER_DATA_0 *((vu16*) (0x04000100 + 0x04 * 0)) #define TIMER_DATA_1 *((vu16*) (0x04000100 + 0x04 * 1)) #define TIMER_DATA_2 *((vu16*) (0x04000100 + 0x04 * 2)) #define TIMER_DATA_3 *((vu16*) (0x04000100 + 0x04 * 3)) #define TIMER_CTRL_0 *((vu16*) (0x04000102 + 0x04 * 0)) #define TIMER_CTRL_1 *((vu16*) (0x04000102 + 0x04 * 1)) #define TIMER_CTRL_2 *((vu16*) (0x04000102 + 0x04 * 2)) #define TIMER_CTRL_3 *((vu16*) (0x04000102 + 0x04 * 3)) // Timer control bits. #define TIMER_CTRL_FREQ_0 0 #define TIMER_CTRL_FREQ_1 1 #define TIMER_CTRL_FREQ_2 2 #define TIMER_CTRL_FREQ_3 3 #define TIMER_CTRL_CASCADE (1 << 2) #define TIMER_CTRL_IRQ (1 << 6) #define TIMER_CTRL_ENABLE (1 << 7) // We use timers 2 and 3 to count the number of cycles since the profile_start // functions is called. Don't use if the code we are trying to profile make use // of these timers. static inline void profile_start(void) { TIMER_DATA_2 = 0; TIMER_DATA_3 = 0; TIMER_CTRL_2 = 0; TIMER_CTRL_3 = 0; TIMER_CTRL_3 = TIMER_CTRL_ENABLE | TIMER_CTRL_CASCADE; TIMER_CTRL_2 = TIMER_CTRL_ENABLE; } static inline u32 profile_stop(void) { TIMER_CTRL_2 = 0; return (TIMER_DATA_3 << 16) | TIMER_DATA_2; } // // Input handling. // // Memory address for key input and control register #define KEY_INPUTS *((vu16*) 0x04000130) #define KEY_CTRL *((vu16*) 0x04000132) // Key control register bits. #define KEY_IRQ_KEY(N) (N) #define KEY_IRQ (1 << 0xE) #define KEY_IRQ_IF_SET (1 << 0xF) // Alias for key pressing bits. #define KEY_A (1 << 0) #define KEY_B (1 << 1) #define KEY_SELECT (1 << 2) #define KEY_START (1 << 3) #define KEY_RIGHT (1 << 4) #define KEY_LEFT (1 << 5) #define KEY_UP (1 << 6) #define KEY_DOWN (1 << 7) #define KEY_R (1 << 8) #define KEY_L (1 << 9) #define KEY_MASK 0x03FF // Saving the previous and current key states as globals for now. static u16 key_curr = 0; static u16 key_prev = 0; static inline void poll_keys(void) { key_prev = key_curr; key_curr = ~KEY_INPUTS & KEY_MASK; } // Returns true if the given key has been pressed at time of calling and was not // pressed since the previous call. For example, if a key is being held, this // function will return `true` only on the frame where the key initially // activated. static inline u32 key_pressed(u32 key) { return (key_curr & key) & ~(key_prev & key); } // Check if the given key is pressed and has been since at least one frame. static inline u32 key_hold(u32 key) { return (key_curr & key) & key_prev & key; } // Check if the given key/button is currently pressed. #define KEY_PRESSED(key) (~(KEY_INPUTS) & key) // Back/unpack bits. static inline u32 unpack_1bb(u8 hex) { const u32 conversion_u32[16] = { 0x00000000, 0x00000001, 0x00000010, 0x00000011, 0x00000100, 0x00000101, 0x00000110, 0x00000111, 0x00001000, 0x00001001, 0x00001010, 0x00001011, 0x00001100, 0x00001101, 0x00001110, 0x00001111, }; u8 low = hex & 0xF; u8 high = (hex >> 4) & 0xF; return (conversion_u32[high] << 16) | conversion_u32[low]; } // Unpack N tiles packed at 1bpp. static inline void unpack_tiles(u32 *src, u32 *dst, size_t n_tiles) { u32 *target_src = src + n_tiles * 2; while (src != target_src) { *dst++ = unpack_1bb((*src >> 24) & 0xFF); *dst++ = unpack_1bb((*src >> 16) & 0xFF); *dst++ = unpack_1bb((*src >> 8) & 0xFF); *dst++ = unpack_1bb(*src & 0xFF); src++; } } // // Direct Memory Access (DMA) // // Source, destination, and control registers. #define DMA_SRC(N) *((vu32*) 0x040000B0 + (N) * 12) #define DMA_DST(N) *((vu32*) 0x040000B4 + (N) * 12) #define DMA_CTRL(N) *((vu32*) 0x040000B8 + (N) * 12) // DMA control bits. #define DMA_DST_INC (0 << 0x15) #define DMA_DST_DEC (1 << 0x15) #define DMA_DST_FIXED (2 << 0x15) #define DMA_DST_RELOAD (3 << 0x15) #define DMA_SRC_INC (0 << 0x17) #define DMA_SRC_DEC (1 << 0x17) #define DMA_SRC_FIXED (2 << 0x17) #define DMA_REPEAT (1 << 0x19) #define DMA_CHUNK_16 (0 << 0x1A) #define DMA_CHUNK_32 (1 << 0x1A) #define DMA_NOW (0 << 0x1C) #define DMA_VBLANK (1 << 0x1C) #define DMA_HBLANK (2 << 0x1C) #define DMA_REFRESH (3 << 0x1C) #define DMA_IRQ (1 << 0x1E) #define DMA_ENABLE (1 << 0x1F) // Custom struct for cleaner DMA transfer functions. typedef struct DmaStr { const void *src; void *dst; u32 ctrl; } DmaStr; #define DMA_TRANSFER ((volatile DmaStr*) 0x040000B0) // Transfer `count` number of chunks from src to dst using a DMA channel. Note // that chunks are not bytes, but instead configured based on bits set by // DMA_CTRL. inline void dma_transfer_copy(void *dst, const void *src, u32 count, int channel, u32 options) { DMA_TRANSFER[channel].ctrl = 0; DMA_TRANSFER[channel].src = src; DMA_TRANSFER[channel].dst = dst; DMA_TRANSFER[channel].ctrl = count | options; } inline void dma_transfer_fill(void *dst, volatile u32 src, u32 count, int channel, u32 options) { DMA_TRANSFER[channel].ctrl = 0; DMA_TRANSFER[channel].src = (const void *)&src; DMA_TRANSFER[channel].dst = dst; DMA_TRANSFER[channel].ctrl = count | options | DMA_SRC_FIXED; } // Copy N number of bytes using a DMA channel. inline void dma_copy(void *dst, const void *src, u32 size, int channel) { dma_transfer_copy(dst, src, size / 4, channel, DMA_CHUNK_32 | DMA_ENABLE); } // Fill the dst location with the word set at src. inline void dma_fill(void *dst, const void *src, u32 size, int channel) { dma_transfer_fill(dst, (volatile u32)src, size / 4, channel, DMA_CHUNK_32 | DMA_ENABLE); } // // Interrupts. // #define IRQ_ENABLE *((vu16*) 0x04000200) #define IRQ_ACK *((vu16*) 0x04000202) #define IRQ_CTRL *((vu16*) 0x04000208) #define IRQ_ACK_BIOS *((vu16*) 0x03007FF8) typedef enum { IRQ_VBLANK, IRQ_HBLANK, IRQ_VCOUNT, IRQ_TIMER_0, IRQ_TIMER_1, IRQ_TIMER_2, IRQ_TIMER_3, IRQ_SERIAL, IRQ_DMA_0, IRQ_DMA_1, IRQ_DMA_2, IRQ_DMA_3, IRQ_KEYPAD, IRQ_GAMEPAK, } IrqIndex; typedef void (*IrsFunc)(void); IrsFunc irs_table[] = { [IRQ_VBLANK ] = NULL, [IRQ_HBLANK ] = NULL, [IRQ_VCOUNT ] = NULL, [IRQ_TIMER_0] = NULL, [IRQ_TIMER_1] = NULL, [IRQ_TIMER_2] = NULL, [IRQ_TIMER_3] = NULL, [IRQ_SERIAL ] = NULL, [IRQ_DMA_0 ] = NULL, [IRQ_DMA_1 ] = NULL, [IRQ_DMA_2 ] = NULL, [IRQ_DMA_3 ] = NULL, [IRQ_KEYPAD ] = NULL, [IRQ_GAMEPAK] = NULL, }; void irq_enable(IrqIndex idx) { switch (idx) { case IRQ_VBLANK: { DISP_STATUS |= DISP_VBLANK_IRQ; } break; case IRQ_HBLANK: { DISP_STATUS |= DISP_HBLANK_IRQ; } break; case IRQ_VCOUNT: { DISP_STATUS |= DISP_VCOUNT_IRQ; } break; case IRQ_TIMER_0: { TIMER_CTRL_0 |= TIMER_CTRL_IRQ; } break; case IRQ_TIMER_1: { TIMER_CTRL_1 |= TIMER_CTRL_IRQ; } break; case IRQ_TIMER_2: { TIMER_CTRL_2 |= TIMER_CTRL_IRQ; } break; case IRQ_TIMER_3: { TIMER_CTRL_3 |= TIMER_CTRL_IRQ; } break; case IRQ_SERIAL: { /* TODO: Set REG_SERIAL? */ } break; case IRQ_DMA_0: { DMA_CTRL(0) |= DMA_IRQ; } break; case IRQ_DMA_1: { DMA_CTRL(1) |= DMA_IRQ; } break; case IRQ_DMA_2: { DMA_CTRL(2) |= DMA_IRQ; } break; case IRQ_DMA_3: { DMA_CTRL(3) |= DMA_IRQ; } break; case IRQ_KEYPAD: { KEY_CTRL |= KEY_IRQ; } break; case IRQ_GAMEPAK: { /* Nothing to do here...*/ } break; } IRQ_ENABLE |= (1 << idx); } void irq_disable(IrqIndex idx) { switch (idx) { case IRQ_VBLANK: { DISP_STATUS &= ~DISP_VBLANK_IRQ; } break; case IRQ_HBLANK: { DISP_STATUS &= ~DISP_HBLANK_IRQ; } break; case IRQ_VCOUNT: { DISP_STATUS &= ~DISP_VCOUNT_IRQ; } break; case IRQ_TIMER_0: { TIMER_CTRL_0 &= ~TIMER_CTRL_IRQ; } break; case IRQ_TIMER_1: { TIMER_CTRL_1 &= ~TIMER_CTRL_IRQ; } break; case IRQ_TIMER_2: { TIMER_CTRL_2 &= ~TIMER_CTRL_IRQ; } break; case IRQ_TIMER_3: { TIMER_CTRL_3 &= ~TIMER_CTRL_IRQ; } break; case IRQ_SERIAL: { /* TODO: Set REG_SERIAL? */ } break; case IRQ_DMA_0: { DMA_CTRL(0) &= ~DMA_IRQ; } break; case IRQ_DMA_1: { DMA_CTRL(1) &= ~DMA_IRQ; } break; case IRQ_DMA_2: { DMA_CTRL(2) &= ~DMA_IRQ; } break; case IRQ_DMA_3: { DMA_CTRL(3) &= ~DMA_IRQ; } break; case IRQ_KEYPAD: { KEY_CTRL &= ~KEY_IRQ; } break; case IRQ_GAMEPAK: { /* Nothing to do here...*/ } break; } IRQ_ENABLE &= ~(1 << idx); } void irs_set(IrqIndex idx, IrsFunc func) { // Store IRQ_CTRL status and disable interrupts for now. u16 irq_ctrl = IRQ_CTRL; IRQ_CTRL = 0; // Update the IRS table and enable/disable the given IRQ. irs_table[idx] = func; if (func == NULL) { irq_disable(idx); } else { irq_enable(idx); } // Restore previous irq_ctrl. IRQ_CTRL = irq_ctrl; } #define IRS_MAIN *(IrsFunc*)(0x03007FFC) // External irs_main function, has to be written in ARM assembly. void irs_main(void); void irq_init() { IRS_MAIN = irs_main; IRQ_CTRL = 1; } // Stub function pointer needed for when we want to enable interrupts that don't // require a custom function, such as for the BIOS VSync. void irq_stub() {} #endif // GBAEXP_COMMON_H